首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
采用电弧熔炼和真空电磁感应甩带方法制备了Fe91-xLaxZr9(x=1,3,5,10)系列非晶合金,研究了该非晶合金的磁性和磁热效应.X-射线衍射结果显示,样品的形成主要为非晶态合金.非晶态Fe81La10Zr9合金的磁熵变随温度变化的曲线表明,外场为1.5T时样品最大等温磁熵变为0.8J/(kg.K),半峰宽对应的温度变化范围为245~285K.  相似文献   

2.
在Ar气氛下,用真空电弧熔炼方法制备了La10Fe81-xZr9Bx(x=0,1,2)系列母合金,用单铜辊急冷电磁感应甩带技术制备了La10Fe81-xZr9Bx(x=0,1,2)合金薄带.室温X射线衍射结果表明,该系列合金为非晶态合金.磁性测量结果表明,该系列合金具有铁磁性.通过测定等温磁化曲线,确定了该系列合金的磁熵变,其最大值(磁场变化为0~1.5 T)可以达到金属Gd的1/4.  相似文献   

3.
对Nd Ni4-xCoxCu系列化合物的制备工艺、晶体结构和磁性进行研究。用电弧熔炼和热处理法制备Nd Ni4-xCoxCu(x=0,1.0,1.5,1.7,1.9,2.0,2.1,2.3,3.0,4.0)系列化合物样品,对X射线衍射数据精修后分析发现,该系列化合物为单相材料,晶体结构为Ca Cu5型六角结构,空间群为P6/mmm,并给出精修图谱和精修后的XRD衍射图。磁性测量分析表明,该系列化合物发生自旋重取向现象和由铁磁到顺磁的转变,居里温度随着Co含量的增加而升高,该系列化合物的居里温度具有可调性。利用热力学麦克斯韦关系,从系列等温磁化曲线确定了样品的等温磁熵变随温度和磁场变化的关系。在外场强度3 T的条件下,当x<2时,其最大等温磁熵变值随着Co含量的增加而降低,当x>2时最大等温磁熵变值随Co含量的增加再次降低。外场强度1 T条件下,Nd Ni2Co2Cu样品的相对制冷功率(RCP)为128 J/kg。  相似文献   

4.
在研究Gd5Si2-xGe2Znx,Gd5Si2-zGe2-zZn2z系列合金的等温磁熵变和居里温度时发现,Zn的微量变化对合金的磁热性能影响很大.当x或者2z为0.001时,在1.5 T外加磁场变化下,其最大等温磁熵变分别为20.70 J/(kg.K)(x=0.001)和25.30 J/(kg.K)(2z=0.001),居里温度分别为284 K(x=0.001)和280 K(2z=0.001),其磁热性能远高于没有添加Zn元素的合金(5.03 J/(kg.K)).实验证明,微量元素Zn对Gd5Si2Ge2化合物的合金化处理,可使其在低磁场下的磁热效应得到巨幅提高,其最大等温磁熵变优于文献报道的铸锭合金Gd5(Si1-yGey)4及其他添加元素(如Ga,Sn,Cu,B,Al,Bi,Co,Fe,Ni,Mn,C,H等)替代Si或Ge时在5 T高外加磁场变化下的等温磁熵变.  相似文献   

5.
用电弧熔炼法制备了Pr2Fe17-xSix(x=0,0.1,0.15,0.3)系列合金,用粉末X线衍射和磁性测量研究样品的结构、磁性、磁熵变及绝热温变.结果表明:Pr2Fe17-xSix系列合金的晶体结构为Th2Zn17型菱方结构;随着Si含量的增加,居里温度由x=0时的290K提高到x=0.3时的328K;外加磁场为1.5T时,磁熵变由x=0时的2.39J/(kg.K)降低到x=0.3时的1.67J/(kg.K),但绝热温变没有显著变化.  相似文献   

6.
在氩气的保护下用熔炼法制备了(Mn1-xCox)65Ge35系列合金,通过X射线衍射和振动样品磁强计研究了样品的结构和磁熵变.结果表明,(Mn1-xCox)65Ge35系列合金在Co含量x=0.2时,样品为正交结构,磁矩反铁磁排列; 当Co含量0.2≤x≤0.5时,样品为六角结构,磁矩铁磁排列.随着Co含量的增加,合金的居里温度在250~302K范围内变化.在低磁场(0-1.5T)下,(Mn1-xCox)65Ge35系列合金的最大等温磁熵变为1.7J·kg-1·K-1.  相似文献   

7.
通过Landau-Devonshire的热动力学模型,研究了PbZr1-xTixO3(x=0.5、0.6、0.7、0.8、0.9)的结构转变与电热效应。发现50MV/m的强电场可使一级结构相变转变为二级连续相变。此外,零场下当x=0.5、0.6、0.7、0.8、0.9,一级结构转变温度分别为T0=665K、691K、713K、729K、740K。在强电场作用下,一级结构转变逐渐转变为二级相变,而转变温度逐渐升高,导致最大电熵变增强,比热也随之降低。PbZr1-xTixO3(x=0.5、0.6、0.7、0.8、0.9)的最大电热温变出现居里温度以上,即出现在居里温度以上200K附近。  相似文献   

8.
非晶态磁热合金材料可以在很宽的温度范围内实现较大的磁制冷容量,其中铁基非晶态磁热合金因其具有近室温的磁熵变区间和低廉的成本受到广泛关注.本文通过感应熔炼铜辊甩带的方法成功制备出了一系列Fe89?xZr7B4Dyx(x=1,2,3,4)非晶态合金,并对其非晶形成能力和磁热性能进行了系统测试和分析.随着Dy含量的增加,该合金的玻璃形成能力得到改善,居里温度从296 K增加到334 K.磁熵变峰值和制冷能力也随着Dy含量的增加单调增长,在3 T的外加磁场下,Fe85Zr7B4Dy4合金的最大磁熵变达到了2.45 J K?1 kg?1,制冷能力为235 J kg?1,相对于三元Fe-Zr-B体系,同一磁场下的磁熵变峰值提高60%以上.该非晶态合金原材料成本低廉,其磁热性能随着成分变化可以调控,居里温度远低于玻璃转变温度,能够保证材料在使用过程中的结构稳定性,有成为近室温的磁制冷工质的潜力.  相似文献   

9.
用球磨和烧结法制备了Mn1.3Fe0.7PxSi1-x系列化合物.磁性测量结果表明,随着P含量的增加,居里温度由x=0.45时的320K降到x=0.55时的209K;外加磁场变化为1.5T时,在居里温度209K附近,Mn1.3Fe0.7P0.55Si0.45的最大磁熵变为11.3 J/(kg·K).该化合物的热滞为10.4K.良好的磁热效应性能和低廉的原料价格使得该系列化合物有望成为室温区磁制冷工质.  相似文献   

10.
采用X射线衍射和磁性测量等方法,研究LaFe11.6-xCoxSi1.4(x=0.1,0.2,0.3)系列化合物的结构和磁性.结果表明:LaFe11.6-xCoxSi1.4(x=0.1,0.2,0.3)的主相为NaZn13型立方结构,空间群为Fm-3c;随着Co含量的增加,该系列化合物的居里温度TC升高,x=0.1时TC约为202.2 K,并且具有大的磁熵变;外加磁场为1.5 T时,磁熵变-ΔSm=16.1 J/(kg.K).大的磁熵变来源于TC处磁化强度的陡峭变化和TC以上磁场诱发的变磁转变.  相似文献   

11.
Li1+2x+yAlxEuyTi2-x-ySixP3-xO12系统锂快离子导体   总被引:3,自引:1,他引:2       下载免费PDF全文
Li1+2x +yAlxEuyTi2 -x -ySixP3 -xO12 锂快离子导体可用精选的天然高岭石Al4 [Si4 O10 ](OH) 8为原料 ,与Li2 CO3,TiO2 ,NH4 H2 PO4 ,Eu2 O3 高温 (80 0~ 10 0 0℃ )固相反应约 2 0h而制得 .在 y =0 .5 ,x≤ 0 .3 ;x =0 .2 ,y≤ 0 .3的原始组成范围内 ,可以形成一个空间群为R3C的固熔体相 .它们具有较好的离子电导率和较小的离子导电活化能 .当x =0 .2 ,y =0 .1,t=40 0℃时 ,其电导率达 9.98mS·cm-1,其活化能为 34.0kJ.mol-1.  相似文献   

12.
用振动样品磁强计并结合X射线衍射准确判定了Nd2.4Er0.6Fe27.31Ti1.69化合物的磁晶各向异性方式, 研究结果发现, Nd2.4Er0.6Fe27.31Ti1.69化合物的磁晶各向异性从室温时的易面转变到低温时的易锥.  相似文献   

13.
Measured results of magnetoelectric (ME) and converse magnetoelectric (CME) effects of TbxDy1-xFe2-y/ Pb(Mg1/3Nb2/3)(1-x)TixO3/TbxDy1-xFe2-y (TD/PMNT/TD) and PMNT/TD/PMNT laminated composites are presented. ME effect was determined by measuring laminate voltage output under a Helmholtz-generated AC field biased by a DC field (0-1 kOe) (1Oe = 79.58 A/m). The CME effect was measured by recording the voltage induced in a solenoid encompassing the ME sample while exposed to a DC bias field and PMNT layer driven by a 10 V AC source. The ME and CME responses in the two laminated structure are linear. The highest values of ME coefficients in TD/PMNT/TD and PMNT/TD/PMNT composites are 384 mV/Oe and 158 mV/Oe, respectively, while the highest values of CME coefficients in the two composites are 118 mG/V and 162 mG/V (1 G=10^-4 T), respectively.  相似文献   

14.
用热磁测量和X-光衍射谱研究了Nd3Fe29-xTix化合物的成相范围及其温度特性,研究发现,x=1.3-2.0范围内的所有化合物都成单相,其晶体结构具有A2/m空间群的单斜结构,随着Ti含量的增加,晶格参数a,b,c几乎不变,而晶胞体积V略微增加,每个样品都出现了自旋重取向现象,但自旋重取向温度Tsr和居里温度Tc几乎不随Ti的含量而改变。  相似文献   

15.
16.
络合法制备CexZr1—xO2固溶体及其表征   总被引:8,自引:1,他引:7  
介绍了一种新的制备铈锆氧化物固溶体CexZr1-xO2(x≥0.5)的方法:将碳酸铈和氯氧化锆按需要的比例混合,经过销酸处理成透明溶液,加入合适的配合剂,然后用氨水沉淀,底物经过滤,干燥制得前驱化合物,将此前驱物在400-500℃热分解,可制得立方单相,灼失量(1000℃,1h)<5%,比表面积大,晶粒细,热稳定性好的铈锆氧化物固溶体,它可用作汽车尾气净化器的催化助剂、电极材料、增韧陶瓷等。  相似文献   

17.
分别采用电弧熔炼和机械合金化法制备Nd60 Fe30-xZrxAl10(x=5,10,15,20)晶态和纳米非晶态合金,并利用X射线衍射仪、振动样品磁强计等对制备的晶态合金和纳米非晶态合金的结构及其磁性能进行分析,研究Fe和Zr相对含量的变化对合金相的组成及磁性能的影响.结果表明:Nd60 Fe30-xZrxAl10(x=5,10,15,20)合金晶态及纳米非晶态合金均显示软磁性;对于晶态样品,随着Zr含量的增加,样品的磁化强度逐步降低;对于纳米非晶态合金,随着Zr含量的增加,合金的饱和磁化强度降低;相同成分的纳米非晶态合金的饱和磁化强度高于相应的晶态合金的饱和磁化强度.Nd60Fe20Zr10Al10混合粉末球磨100 h后达到了完全非晶化,说明Nd60 Fe20Zr10Al10有较好的非晶形成能力.  相似文献   

18.
通过对EuSr2Ru1-xNbxCu2O8体系的结构、磁化强度和电阻进行观测,结果发现:EuSr2Cu2O8样品呈现超导电性和铁磁性共存,其超导临界温度为Tc^onset≈35K,Tc(ρ=0)=10K,铁磁相变温度为TM=130.2K;Nb部分替代Ru同时导致铁磁相变温度和超导临界温度的下降,前者进一步说明了EuSr2RuCu2O8体系中磁有序权来源于Ru的磁矩,而超导临界温度的下降则是由于CuO2平面载流子浓度下降所致。  相似文献   

19.
The function of disproportionation and desorption stages of hydrogenation-disproportionation-desorption-recombination (HDDR) process in the formation of magnetic anisotropy was studied. The results showed that degree of anisotropy (DOA) of Nd13Fe80B7 induced by appropriate HDDR process is comparable with that of Nd13Fe80-xB7Mx (M=Co, Zr or Ga), however, the moder-ate coercive force of Nd13Fe80B7 magnetic powder led to an undesirable (BH)max of 104 kJ/m3 in bonded magnet. Experiments demonstrated that a relatively short disproportionation time, combined with a high desorption temperature and slow desorption rate, during HDDR process is beneficial to anisotropy attainment, but HDDR Nd13Fe80B7 magnetic powder becomes isotropic if the dispropor-tionation time is longer than a certain period. This phenomenon strongly indicated that the origin of anisotropy in NdFeB-type HDDR material is contributed by disproportionation stage. XRD (X-ray Diffraction) analysis and TEM (Transmission Electron Mi-croscope) observation told that no other phase except NdH2, α-Fe and Fe2B has been found in the disproportionation step. The for-mation of HDDR Nd13Fe80B7 anisotropy might be related to the early lamella disproportionation structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号