首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The problem of nonlinear oscillations of two Berger plates occupying bounded domains Ω in different parallel planes and coupled by internal subdomains Ω1Ω is considered. A dynamical system generated by the problem in the space is studied. The long-time behavior of the trajectories of the system and its dependence on the value of the coupling parameter γ is described in terms of the system global attractor. In particular, we prove a synchronization phenomenon at the level of attractor for the system. Namely, we consider a (limiting) dynamical system generated by a suitable second order in time evolution equation in the space consisting of the elements from H with coordinates equal for the values of the spatial variable x from the closed set : , and prove that the attractor of the system describing oscillations of two partially coupled Berger plates approaches the attractor of the limiting system as γ tends to the infinity.  相似文献   

2.
In this paper, the various cases of synchronization phenomena investigated in a system of two bidirectionally coupled double scroll circuits, were studied. Complete synchronization, inverse lag synchronization, and inverse π-lag synchronization are the observed synchronization phenomena, as the coupling factor is varied. The inverse lag synchronization phenomenon in mutually coupled identical oscillators is presented for the first time. As the coupling factor is increased, the system undergoes a transition from chaotic desynchronization to chaotic complete synchronization, while inverse lag synchronization and inverse π-lag synchronization are observed for greater values of the coupling factor, depending on the initial conditions of the state variables of the system. Inverse π-lag synchronization in coupled nonlinear oscillators is a special case of lag synchronization, which is also presented for the first time.  相似文献   

3.
To estimate the ultimate bound and positively invariant set for a dynamic system is an important but quite challenging task in general. This paper has investigated the ultimate bound and positively invariant set of a permanent magnet synchronous motor system. We combine the Lyapunov stability theory with the comparison principle method. For this system, we derive a three-dimensional ellipsoidal ultimate bound and positively invariant set for all the positive values of its parameters σ, γ. In addition, the two-dimensional bound with respect to x ? y are established. Then, it is the two-dimensional estimation about x ? z. Finally, the result is applied to the study of completely chaos synchronization. Numerical simulations are presented to show the effectiveness of the proposed chaos synchronization scheme. At the same time, one numerical example illustrating a localization of a chaotic attractor is presented as well. Numerical simulation is consistent with the results of theoretical calculation.  相似文献   

4.
Many biological and chemical systems could be modeled by a population of oscillators coupled indirectly via a dynamical environment. Essentially, the environment by which the individual element communicates with each other is heterogeneous. Nevertheless, most of previous works considered the homogeneous case only. Here we investigated the dynamical behaviors in a population of spatially distributed chaotic oscillators immersed in a heterogeneous environment. Various dynamical synchronization states (such as oscillation death, phase synchronization, and complete synchronized oscillation) as well as their transitions were explored. In particular, we uncovered a non-traditional quorum sensing transition: increasing the population density leaded to a transition from oscillation death to synchronized oscillation at first, but further increasing the density resulted in degeneration from complete synchronization to phase synchronization or even from phase synchronization to desynchronization. The underlying mechanism of this finding was attributed to the dual roles played by the population density. What’s more, by treating the environment as another component of the oscillator, the full system was then effectively equivalent to a locally coupled system. This fact allowed us to utilize the master stability functions approach to predict the occurrence of complete synchronization oscillation, which agreed with that from the direct numerical integration of the system. The potential candidates for the experimental realization of our model were also discussed.  相似文献   

5.
Abstract

A coupled system of the two-dimensional Navier–Stokes equations and the salinity transport equation with spatially correlated white noise on the boundary as well as in fluid is investigated. The noise affects the system through a dynamical boundary condition. This system may be considered as a model for gravity currents in oceanic fluids. The noise is due to uncertainty in salinity flux on fluid boundary. After transforming this system into a random dynamical system, we first obtain asymptotic estimates on system evolution, and then show that the long time dynamics is captured by a random attractor.  相似文献   

6.
A great number of techniques developed for studying nonlinear dynamical systems start with the embedding, in a d-dimensional space, of a scalar time series, lying on an m-dimensional object, d > m. In general, the main results reached at are valid regardless of the observable chosen. In a number of practical situations, however, the choice of the observable does influence our ability to extract dynamical information from the embedded attractor. This may arise in standard problems in nonlinear dynamics such as model building, control theory and synchronization. To some degree, ease of success will thus depend on the choice of observable simply because it is related to the observability of the dynamics. Investigating the Rössler system, we show that the observability matrix is related to the map between the original phase space and the differential embedding induced by the observable. This paper investigates a form for the observability matrix for nonlinear system which is more general than the previous one used. The problem of controllability is also mentioned.  相似文献   

7.
In this paper, a four-dimensional (4D) continuous autonomous hyperchaotic system is introduced and analyzed. This hyperchaotic system is constructed by adding a linear controller to the 3D autonomous chaotic system with a reverse butterfly-shape attractor. Some of its basic dynamical properties, such as Lyapunov exponents, Poincare section, bifurcation diagram and the periodic orbits evolving into chaotic, hyperchaotic dynamical behavior by varying parameter d are studied. Furthermore, the full state hybrid projective synchronization (FSHPS) of new hyperchaotic system with unknown parameters including the unknown coefficients of nonlinear terms is studied by using adaptive control. Numerical simulations are presented to show the effective of the proposed chaos synchronization scheme.  相似文献   

8.
The nonlinear reaction‐diffusion system in an unbounded domain is studied. It is proven that, under some natural assumptions on the nonlinear term and on the diffusion matrix, this system possesses a global attractor ?? in the corresponding phase space. Since the dimension of the attractor happens to be infinite, we study its Kolmogorov's ?‐entropy. Upper and lower bounds of this entropy are obtained. Moreover, we give a more detailed study of the attractor for the spatially homogeneous RDE in ?n. In this case, a group of spatial shifts acts on the attractor. In order to study the spatial complexity of the attractor, we interpret this group as a dynamical system (with multidimensional “time” if n > 1) acting on a phase space ??. It is proven that the dynamical system thus obtained is chaotic and has infinite topological entropy. In order to clarify the nature of this chaos, we suggest a new model dynamical system that generalizes the symbolic dynamics to the case of the infinite entropy and construct the homeomorphic (and even Lipschitz‐continuous) embedding of this system into the spatial shifts on the attractor. Finally, we consider also the temporal evolution of the spatially chaotic structures in the attractor and prove that the spatial chaos is preserved under this evolution. © 2003 Wiley Periodicals, Inc.  相似文献   

9.
Inverted pendulum and spring-mass models have been successfully used to explore the dynamics of the lower extremity for animal and human locomotion. These models have been classified as templates that describe the biomechanics of locomotion. A template is a simple model with all the joint complexities, muscles and neurons of the locomotor system removed. Such templates relate well to the observed locomotive patterns and provide reference points for the development of more elaborate dynamical systems. In this investigation, we explored if a passive dynamic double pendulum walking model, that walks down a slightly sloped surface (γ<0.0189 rad), can be used as a template for exploring chaotic locomotion. Simulations of the model indicated that as γ was increased, a cascade of bifurcations were present in the model's locomotive pattern that lead to a chaotic attractor. Positive Lyapunov exponents were present from 0.01839 rad <γ<0.0189 rad (Lyapunov exponent range=+0.002 to +0.158). Hurst exponents for the respective γ confirmed the presence of chaos in the model's locomotive pattern. These results provide evidence that a passive dynamic double pendulum walking model can be used as a template for exploring the biomechanical control parameters responsible for chaos in human locomotion.  相似文献   

10.
广义同步化流形的Holder连续性   总被引:1,自引:0,他引:1  
张荣  徐振源 《系统科学与数学》2008,28(12):1509-1524
证明了两个不同的混沌系统线性耦合时能实现广义同步化,在一定条件下广义同步化流形是Holder连续的.采用的思想是Temam的无穷维动力系统的惯性流形理论的改进.在线性耦合下两个混沌系统具有吸收集和吸引子的基础上,通过定义在一个函数类上的映射满足Schauder不动点定理,从而得到广义同步化流形,该广义同步化流形具有不变性.又证明了存在分数维的指数吸引子,指数吸引子与广义同步流形的交集具有指数吸引性.数值仿真证实了理论的正确性.在驱动系统和响应系统外引入辅助系统,辅助系统与响应系统的完全同步化表明了驱动系统和响应系统的广义同步化.  相似文献   

11.
This paper considers the synchronization dynamics in a ring of four mutually coupled biological systems described by coupled Van der Pol oscillators. The coupling parameter are non-identical between oscillators. The stability boundaries of the process are first evaluated without the influence of the local injection using the eigenvalues properties and the fourth-order Runge–Kutta algorithm. The effects of a locally injected trajectory on the stability boundaries of the synchronized states are performed using numerical simulations. In both cases, the stability boundaries and the main dynamical states are reported on the stability maps in the (K1, K2) plane.  相似文献   

12.
We have considered the complexity and asymptotic stability in the process of biochemical substance exchange in a coupled ring of cells. We have used coupled maps to model this process. It includes the coupling parameter, cell affinity and environmental factor as master parameters of the model. We have introduced: (i) the Lempel–Ziv complexity spectrum and (ii) the Lempel–Ziv complexity spectrum highest value to analyze the dynamics of two cell model. The asymptotic stability of this dynamical system using an eigenvalue-based method has been considered. Using these complexity measures we have noticed an “island” of low complexity in the space of the master parameters for the weak coupling. We have explored how stability of the equilibrium of the biochemical substance exchange in a multi-cell system (N = 100) is influenced by the changes in the master parameters of the model for the weak and strong coupling. We have found that in highly chaotic conditions there exists space of master parameters for which the process of biochemical substance exchange in a coupled ring of cells is stable.  相似文献   

13.
The paper studies the existence of the finite-dimensional global attractors and exponential attractors for the dynamical system associated with the Kirchhoff type equation with a strong dissipation uttM(‖∇u2u−Δut+h(ut)+g(u)=f(x). It proves that the above mentioned dynamical system possesses a global attractor which has finite fractal dimension and an exponential attractor. For application, the fact shows that for the concerned viscoelastic flow the permanent regime (global attractor) can be observed when the excitation starts from any bounded set in phase space, and the dimension of the attractor, that is, the number of degree of freedom of the turbulent phenomenon and thus the level of complexity concerning the flow, is finite.  相似文献   

14.
根据数值计算的结果提出了模态耦合的条件,两个方程在高频模态上是耦合的,而在低频模态上是不耦合的.利用了无穷维动力系统理论,证明了两个高频模态耦合的Ginzburg-Landau方程在函数空间中存在吸引域,因而存在连通的、有限维的紧的整体吸引子.驱动方程存在时空混沌.将方程组联系一个截断形式,得到的修正方程组将保持原方程组的动力学行为.高频模态耦合的两个方程在一定的条件下具有挤压性质,证明了可达到完全的时空混沌同步化.在数学上定性解释了无穷维动力系统的同步化现象.研究方法不同于有限维动力系统中通常使用的Liapunov函数方法与近似线性方法.  相似文献   

15.
The stability of the completely synchronous state in neural networks with electrical coupling is analytically investigated applying both the Master Stability Function approach (MSF), developed by Pecora and Carroll (1998), and the Connection Graph Stability method (CGS) proposed by Belykh et al. (2004). The local dynamics is described by Morris–Lecar model for spiking neurons and by Hindmarsh–Rose model in spike, burst, irregular spike and irregular burst regimes. The combined application of both CGS and MSF methods provides an efficient estimate of the synchronization thresholds, namely bounds for the coupling strength ranges in which the synchronous state is stable. In all the considered cases, we observe that high values of coupling strength tend to synchronize the system. Furthermore, we observe a correlation between the single node attractor and the local stability properties given by MSF. The analytical results are compared with numerical simulations on a sample network, with excellent agreement.  相似文献   

16.
In this paper we prove a result on lower semicontinuity of pullback attractors for dynamical systems given by semilinear differential equations in a Banach space. The situation considered is such that the perturbed dynamical system is non-autonomous whereas the limiting dynamical system is autonomous and has an attractor given as union of unstable manifold of hyperbolic equilibrium points. Starting with a semilinear autonomous equation with a hyperbolic equilibrium solution and introducing a very small non-autonomous perturbation we prove the existence of a hyperbolic global solution for the perturbed equation near this equilibrium. Then we prove that the local unstable and stable manifolds associated to them are given as graphs (roughness of dichotomy plays a fundamental role here). Moreover, we prove the continuity of this local unstable and stable manifolds with respect to the perturbation. With that result we conclude the lower semicontinuity of pullback attractors.  相似文献   

17.
In this work the existence of a global attractor is proved for the solution semiflow of the coupled two-compartment Gray-Scott equations with the homogeneous Neumann boundary condition on a bounded domain of space dimension n≤3. The grouping estimation method combined with a new decomposition approach is introduced to overcome the difficulties in proving the absorbing property and the asymptotic compactness of this four-component reaction-diffusion systems with cubic autocatalytic nonlinearity and linear coupling. The finite dimensionality of the global attractor is also proved.  相似文献   

18.
Synchronization in an array of coupled identical nonlinear dynamical systems have attracted increasing attention from various fields of science and engineering. In this paper, we investigate the synchronization phenomenon in tree-like dynamical networks. Based on the LaSalle invariant principle, a simple and systematic adaptive control scheme with variable coupling strength is proposed for the synchronization of tree-like dynamical networks without any knowledge of the concrete structure of isolate system. This result indicates that synchronization can be achieved for strong enough coupling if there exists a system (located at the root of the tree) which directly or indirectly influences all other systems. Furthermore, the main result is applied to several Lorenz chaotic systems coupled by a tree. And numerical simulations are also given to show the effectiveness of the proposed synchronization method.  相似文献   

19.
A physical model of the fundamental configuration of two mutually coupled semiconductor lasers is presented for logic-gate applications, and the principles of optoelectronic logic computing based on chaotic synchronization or chaotic de-synchronization are defined. Two laser diodes were coupled via injection of each into the opposite laser and became chaotic; our analysis showed that the oscillation derives from chaotic fluctuations after a progression from stability to period-doubling by varying the coupling factor, delay time or detuning. Chaotic synchronization is achieved between the two lasers through the coupling, where we found chaotic and quasi-periodic synchronization regions. Based on the chaotic synchronization system, three optoelectronic logic gates can be implemented by modulating the laser diode current to synchronize or de-synchronize the two chaotic states. Finally, we studied the effects of resynchronization time on logic gate function in a practical implementation of the system. Numerical results show the validity and feasibility of the method.  相似文献   

20.
For an abstract dynamical system, we establish, under minimal assumptions, the existence of D-attractor, i.e. a pullback attractor for a given class D of families of time varying subsets of the phase space. We relate this concept with the usual attractor of fixed bounded sets, pointing out its usefulness in order to ensure the existence of this last attractor in particular situations. Moreover, we prove that under a simple assumption these two notions of attractors generate, in fact, the same object. This is then applied to a Navier-Stokes model, improving some previous results on attractor theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号