首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.

In this article we expand the filter functions of the classical Hermite transform into the Clifford-Hermite polynomials. Furthermore, we construct a new higher dimensional Hermite transform within the framework of Clifford analysis using the radial and generalized Clifford-Hermite polynomials. Finally we compare this newly introduced Clifford-Hermite transform with the Clifford-Hermite Continuous Wavelet transform.  相似文献   

2.

Specific three dimensional wavelet functions for the Continuous Wavelet Transform (CWT) in the framework of Clifford analysis are tested upon their selectivity for pointwise and directional analysis of signals. These tests are carried out on scalar benchmark signals: the infinite rod, the semi-infinite rod and the rod of finite length. It is demonstrated that the Clifford-Hermite wavelets are efficient at detecting pointwise singularities, whereas the Clifford-Morlet wavelets possess the qualifications for directional analysis of three-dimensional signals.  相似文献   

3.
Clifford analysis is a higher‐dimensional function theory offering a refinement of classical harmonic analysis, which has proven to be an appropriate framework for developing higher‐dimensional continuous wavelet transforms, the construction of the wavelets being based on generalizations to a higher dimension of classical orthogonal polynomials on the real line. More recently, Hermitean Clifford analysis has emerged as a new branch of Clifford analysis, offering yet a refinement of the standard Euclidean case; it focusses on so‐called Hermitean monogenic functions, i.e. simultaneous null solutions of two Hermitean Dirac operators. In this Hermitean setting, Clifford–Hermite polynomials and their associated families of wavelet kernels have been constructed starting from a Rodrigues formula involving both Hermitean Dirac operators mentioned. Unfortunately, the property of the so‐called vanishing moments of the corresponding mother wavelets, ensuring that polynomial behaviour in the analyzed signal is filtered out, is only partially satisfied and has to be interpreted with care, the underlying mathematical reason being the fact that the Hermitean Clifford–Hermite polynomials show a too restrictive structure. In this paper, we will remediate this drawback by considering generalized Hermitean Clifford–Hermite polynomials, involving in their definition homogeneous Hermitean monogenic polynomials. The ultimate goal being the construction of new continuous wavelet transforms by means of these polynomials, we first deeply investigate their properties, amongst which are their connection with the traditional Laguerre polynomials, their structure and recurrence relations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a construction of the n = 2 (mod 4) Clifford algebra Cl n,0-valued admissible wavelet transform using the admissible similitude group SIM(n), a subgroup of the affine group of \mathbbRn{\mathbb{R}^{n}} . We express the admissibility condition in terms of the Cl n,0 Clifford Fourier transform (CFT). We show that its fundamental properties such as inner product, norm relation, and inversion formula can be established whenever the Clifford admissible wavelet satisfies a particular admissibility condition. As an application we derive a Heisenberg type uncertainty principle for the Clifford algebra Cl n,0-valued admissible wavelet transform. Finally, we provide some basic examples of these extended wavelets such as Clifford Morlet wavelets and Clifford Hermite wavelets.  相似文献   

5.
In the present paper, by extending some fractional calculus to the framework of Clifford analysis, new classes of wavelet functions are presented. Firstly, some classes of monogenic polynomials are provided based on 2-parameters weight functions which extend the classical Jacobi ones in the context of Clifford analysis. The discovered polynomial sets are next applied to introduce new wavelet functions. Reconstruction formula as well as Fourier-Plancherel rules have been proved. The main tool reposes on the extension of fractional derivatives, fractional integrals and fractional Fourier transforms to Clifford analysis.  相似文献   

6.
This paper deals with the efficient application of nonlinear operators in wavelet coordinates using a representation based on local polynomials. In the framework of adaptive wavelet methods for solving, e.g., PDEs or eigenvalue problems, one has to apply the operator to a vector on a target wavelet index set. The central task is to apply the operator as fast as possible in order to obtain an efficient overall scheme. This work presents a new approach of dealing with this problem. The basic ideas together with an implementation for a specific PDE on an L-shaped domain were presented firstly in [38]. Considering the approximation of a function based on wavelets consisting of piecewise polynomials, e.g., spline wavelets, one can represent each wavelet using local polynomials on cells of the underlying domain. Because of the multilevel structure of the wavelet spaces, the generated polynomial usually consists of many overlapping pieces living on different spatial levels. Since nonlinear operators, by definition, cannot generally be applied to a linear decomposition exactly, a locally unique representation is sought. The application of the operator to these polynomials now has a simple structure due to the locality of the polynomials and many operators can be applied exactly to the local polynomials. From these results, the values of the target wavelet index set can be reconstructed. It is shown that all these steps can be applied in optimal linear complexity. The purpose of the presented paper is to provide a self-consistent development of this operator application independent of the particular PDE, operator, underlying domain, types of wavelets, or space dimension, thereby extending and modifying the previous ideas from [38].  相似文献   

7.
基于高斯型窗函数的基小波构造   总被引:1,自引:0,他引:1  
阐述了基于高斯型窗函数的可容基小波构造,讨论了若干类基小波.首先引入若干经典基小波如墨西哥草帽小波、莫莱小波、DOG犬小波和盖博解析小波,作者发现它们具有统一的结构,即均由高斯窗函数生成;进而在犬小波结构的启示下,构造了由高斯窗函数的差形成的犬小波族,对之验证了可容性条件;并且将它推广为有限个高斯窗函数的线性组合形成的小波,确定了带通条件.  相似文献   

8.
By applying a method introduced by De Bie and Sommen in Clifford superanalysis, the orthogonality relations of the generalized Clifford–Gegenbauer polynomials of wavelet analysis are extended. Moreover, this new approach allows for proving new important properties of these polynomials, such as an annihilation equation, a differential equation and an expression in terms of the Jacobi polynomials on the real line. This paper is dedicated to the memory of our friend and colleague Jarolim Bureš  相似文献   

9.
We present a higher-dimensional method based on Clifford analysis. To explain the method we consider, the formal solution of the inverse scattering problem for the n-dimensional time-dependent Schrödinger equations given by Nachman and Ablowitz [1]. Replacing the general complex Cauchy formula by a higher-dimensional analogue, we get rid of the “miracle condition”.  相似文献   

10.
In the present paper, new classes of wavelet functions are developed in the framework of Clifford analysis. Firstly, some classes of orthogonal polynomials are provided based on two-parameters weight functions generalizing the well known Jacobi and Gegenbauer classes when relaxing the parameters. The discovered polynomial sets are next applied to introduce new wavelet functions. Reconstruction formula as well as Fourier-Plancherel rule have been proved.  相似文献   

11.
Summary. We generalize earlier results concerning an asymptotic error expansion of wavelet approximations. The properties of the monowavelets, which are the building blocks for the error expansion, are studied in more detail, and connections between spline wavelets and Euler and Bernoulli polynomials are pointed out. The expansion is used to compare the error for different wavelet families. We prove that the leading terms of the expansion only depend on the multiresolution subspaces and not on how the complementary subspaces are chosen. Consequently, for a fixed set of subspaces , the leading terms do not depend on the fact whether the wavelets are orthogonal or not. We also show that Daubechies' orthogonal wavelets need, in general, one level more than spline wavelets to obtain an approximation with a prescribed accuracy. These results are illustrated with numerical examples. Received May 3, 1993 / Revised version received January 31, 1994  相似文献   

12.
We describe algorithms for constructing biorthogonal wavelet systems and refinable functions whose masks are generalized Walsh polynomials. We give new examples of biorthogonal compactly supported wavelets on Vilenkin groups.  相似文献   

13.
We present integrated wavelets as a method for discretizing the continuous wavelet transform. Using the language of group theory, the results are presented for wavelet transforms over semidirect product groups. We obtain tight wavelet frames for these wavelet transforms. Further integrated wavelets yield tight families of convolution operators independent of the choice of discretization of scale and orientation parameters. Thus these families can be adapted to specific problems. The method is more flexible than the well-known dyadic wavelet transform. We state an exact algorithm for implementing this transform. As an application the enhancement of digital mammograms is presented.  相似文献   

14.
Discrete Clifford analysis is a discrete higher-dimensional function theory which corresponds simultaneously to a refinement of discrete harmonic analysis and to a discrete counterpart of Euclidean Clifford analysis. The discrete framework is based on a discrete Dirac operator that combines both forward and backward difference operators and on the splitting of the basis elements $\mathbf{e}_j = \mathbf{e}_j^+ + \mathbf{e}_j^-$ into forward and backward basis elements $\mathbf{e}_j^\pm $ . For a systematic development of this function theory, an indispensable tool is the Taylor series expansion, which decomposes a discrete (monogenic) function in terms of discrete homogeneous (monogenic) building blocks. The latter are the so-called discrete Fueter polynomials. For a discrete function, the authors assumed a series expansion which is formally equivalent to the Taylor series expansion in Euclidean Clifford analysis; however, attention needed to be paid to the geometrical conditions on the domain of the function, the convergence and the equivalence to the given discrete function. We furthermore applied the theory to discrete delta functions and investigated the connection with Shannon sampling theorem (Bell Sys Tech J 27:379–423, 1948). We found that any discrete function admits a series expansion into discrete homogeneous polynomials and any discrete monogenic function admits a Taylor series expansion in terms of the discrete Fueter polynomials, i.e. discrete homogeneous monogenic polynomials. Although formally the discrete Taylor series expansion of a function resembles the continuous Taylor series expansion, the main difference is that there is no restriction on discrete functions to be represented as infinite series of discrete homogeneous polynomials. Finally, since the continuous expansion of the Taylor series expansion of discrete delta functions is a sinc function, the discrete Taylor series expansion lays a link with Shannon sampling.  相似文献   

15.
On the construction of wavelets on a bounded interval   总被引:3,自引:0,他引:3  
This paper presents a general approach to a multiresolution analysis and wavelet spaces on the interval [–1, 1]. Our method is based on the Chebyshev transform, corresponding shifts and the discrete cosine transformation (DCT). For the wavelet analysis of given functions, efficient decomposition and reconstruction algorithms are proposed using fast DCT-algorithms. As examples for scaling functions and wavelets, polynomials and transformed splines are considered.  相似文献   

16.
Scale-discretised wavelets yield a directional wavelet framework on the sphere where a signal can be probed not only in scale and position but also in orientation. Furthermore, a signal can be synthesised from its wavelet coefficients exactly, in theory and practice (to machine precision). Scale-discretised wavelets are closely related to spherical needlets (both were developed independently at about the same time) but relax the axisymmetric property of needlets so that directional signal content can be probed. Needlets have been shown to satisfy important quasi-exponential localisation and asymptotic uncorrelation properties. We show that these properties also hold for directional scale-discretised wavelets on the sphere and derive similar localisation and uncorrelation bounds in both the scalar and spin settings. Scale-discretised wavelets can thus be considered as directional needlets.  相似文献   

17.
Classical results on the expansion of complex functions in a series of special polynomials (namely inverse similar sets of polynomials) are extended to the Clifford setting. This expansion is shown to be valid in closed balls. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The Mehler Formula for the Generalized Clifford-Hermite Polynomials   总被引:1,自引:0,他引:1  
The Mehler formula for the Hermite polynomials allows for an integral representation of the one-dimensional Fractional Fourier transform. In this paper, we introduce a multi-dimensional Fractional Fourier transform in the framework of Clifford analysis. By showing that it coincides with the classical tensorial approach we are able to prove Mehler's formula for the generalized Clifford-Hermite polynomials of Clifford analysis.  相似文献   

19.
We apply adaptive wavelet methods to boundary value problems with random coefficients, discretized by wavelets in the spatial domain and tensorized polynomials in the parameter domain. Greedy algorithms control the approximate application of the fully discretized random operator, and the construction of sparse approximations to this operator. We suggest a power iteration for estimating errors induced by sparse approximations of linear operators.  相似文献   

20.
The wavelet subspaces of the space of square integrable functions on the affine group with respect to the left invariant Haar measure are studied using the techniques from Vasilevski (Integral Equ. Operator Theory 33:471–488, 1999) with respect to wavelets whose Fourier transforms are related to Laguerre polynomials. The orthogonal projections onto each of these wavelet subspaces are described and explicit forms of reproducing kernels are established. Isomorphisms between wavelet subspaces are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号