首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We recently discovered that a linear multifunctional trimethylsilylacetylene (TMSA) compound forms long-range and highly stable self-assembled monolayers (SAMs) on reconstructed Au(111). To better understand the interactions governing self-assembly in this new system, we synthesized a series of homologue organosilanes and performed scanning tunneling microscopy (STM) measurements at the Au(111)/n-tetradecane interface. The four TMSA-terminated linear silanes that we synthesized self-assemble in similar ways on gold, with the molecules standing upright on the surface. In contrast, compounds with a slightly modified terminal group but the same polyunsaturated linear chain above the TMSA head do not self-assemble. In particular, substituting a methyl group of TMSA with a more bulky one prevents self-assembly. Removing the C triple bond C triple bond of TMSA or substituting the Si atom by a C atom also hinders self-assembly. Finally, substituting one methyl group of TMSA by a hydrogen atom induces self-assembly but in a different geometry, with the molecules lying flat on the gold surface in a quasi-epitaxy mode. Our molecular approach demonstrates the key role played by the TMSA head in self-assembly, its origin being twofold: 1) the TMSA layers are commensurate to the Au(111) adlattice along the <112> direction, and 2) the C triple bond C triple bond of TMSA activates the Si atom and induces the creation of a surface Si-Au chemical bond. The highly stable TMSA-based SAMs appear then as promising materials for applications in surface modification.  相似文献   

2.
We have investigated the tripod-shaped bromo adamantane trithiol (BATT) molecule on Au(111) using scanning tunneling microscopy (STM) at 4.7 K. Adsorption of BATT leads to formation of highly ordered self-assembled monolayers (SAMs) with three-point contacts on Au(111). The structure of these SAMs has been found to have a two-tiered hierarchical chiral organization. The self-assembly of achiral monomers produces chiral trimers, which then act as the building blocks for chiral hexagonal supermolecules. SAMs begin to form from the racemic mixture of assembled molecules in ribbon-shaped islands, followed by the transformation to enantiomeric domains when SAM layers develop two-dimensionally across hcp domains. Such a chiral phase transition at the two-dimensional domain can arise from a subtle balance between molecule-substrate and intermolecular interactions. Two structural factors, the S atom (stabilization) and the methylene groups (chirality) located just above the S atom, induce the chiral ordering of BATT on Au(111).  相似文献   

3.
We present an STM study of self-assembled monolayers of 2,3,6,7,10,11-undecalkoxy-substituted triphenylene (T11) at the n-tetradecane/Au(111) interface under ambient conditions. T11 molecules self-organize as paired rows with molecules lying flat on the surface in an antiparallel position. Three alkyl chains of each T11 molecule align along the 110 direction of the underlying Au(111) substrate. The association of T11 in molecular pairs appears to result from a substrate-induced mechanism governed by the strong anisotropic interaction between T11 alkyl chains and Au(111).  相似文献   

4.
《Supramolecular Science》1996,3(1-3):103-109
Adsorption and desorption processes of self-assembled monolayers (SAMs) have been studied on an Au(111) surface by scanning tunnelling microscopy (STM), atomic force microscopy (AFM), X-ray photo-electron spectroscopy (XPS) and thermal desorption spectroscopy (TDS). At the initial growth stage, the ordered nucleation of SAM located at the herringbone turns of the Au(111) − (22 × √3) surface reconstruction and diffusion-controlled domain formation have been imaged by STM and AFM. Details of the oxidation process in UV desorption were also investigated by XPS. In addition, the dimerization reaction during desorption was confirmed by TDS for the first time in the alkanethiol SAM system.  相似文献   

5.
Self-assembled monolayers (SAMs) of N-heterocyclic olefins (NHOs) have been prepared on Au(111) and their thermal stability, adsorption geometry, and molecular order were characterized by X-ray photoelectron spectroscopy, polarized X-ray absorption spectroscopy, scanning tunneling microscopy (STM), and density functional theory (DFT) calculations. The strong σ-bond character of NHO anchoring to Au induced high geometrical flexibility that enabled a flat-lying adsorption geometry via coordination to a gold adatom. The flat-lying adsorption geometry was utilized to further increase the surface interaction of the NHO monolayer by backbone functionalization with methyl groups that induced high thermal stability and a large impact on work-function values, which outperformed that of N-heterocyclic carbenes. STM measurements, supported by DFT modeling, identified that the NHOs were self-assembled in dimers, trimers, and tetramers constructed of two, three, and four complexes of NHO−Au-adatom. This self-assembly pattern was correlated to strong NHO−Au interactions and steric hindrance between adsorbates, demonstrating the crucial influence of the carbon-metal σ-bond on monolayer properties.  相似文献   

6.
研究Au(111)和Au(100)表面非离子型氟表面活性剂FSN自组装膜的电化学行为.电化学扫描隧道显微术和循环伏安法测试表明,在0~0.8 V电位区间,FSN自组装膜未发生氧化还原,均一性好,可稳定地存在于电极表面,并显著抑制硫酸根离子在电极表面的吸附和Au单晶表面的重构.在FSN自组装膜Au单晶电极的初始氧化阶段,Au(111)表面有少量突起,而Au(100)表面呈现台阶剧烈变化,但FSN自组装膜的吸附结构没有改变.与Au(100)表面相比,Au(111)表面形成的FSN自组装膜可更有效地抑制Au表面的氧化.  相似文献   

7.
利用电化学扫描隧道显微镜和循环伏安法研究了一种新型的杂杯杂芳烃四氮杂杯芳烃三嗪衍生物在Au(111)表面的自组装结构. 高分辨的STM图像表明, 该杂杯杂芳烃可以在Au(111)表面形成长程有序的单层膜. 此外, 分子以1,3-交替构象吸附, 两个三嗪环平躺在表面, 而苯环倾斜吸附在基底上, 这是分子间与分子-基底间相互作用平衡的结果.  相似文献   

8.
A series of disulfides containing bicyclo[2.2.2]octane moieties have been synthesised and their self-assembled monolayers (SAMs) on Au(111) have been characterized using scanning tunnelling microscopy (STM).  相似文献   

9.
We evidence by STM that 2-naphthalenethiol self-assembled monolayers formed at the n-tetradecane/Au(111) interface coexist as two structural phases which both possess molecules into two different orientations (standing and lying). Such a rotational polymorphism is observed and understood at the molecular level for the first time.  相似文献   

10.
The solution self-assembly of alpha,omega-alkanedithiols onto Au(111) was investigated using atomic force microscopy (AFM). A heterogeneous surface morphology is apparent for 1,8-octanedithiol and for 1,9-nonanedithiol self-assembled monolayers (SAMs) prepared by solution immersion as compared to methyl-terminated n-alkanethiols. Local views from AFM images reveal a layer of mixed molecular orientations for alpha,omega-alkanedithiols, which evidence surface structures with heights corresponding to both lying-down and standing-up orientations. For dithiol SAMs prepared by solution self-assembly, the majority of alpha,omega-alkanedithiol molecules chemisorb with both thiol end groups bound to the Au(111) surface with the backbone of the alkane chain aligned parallel to the surface. However, AFM images disclose that there are also islands of standing molecules scattered throughout the surface. To measure the thickness of alpha,omega-alkanedithiol SAMs with angstrom sensitivity, methyl-terminated n-alkanethiols with known dimensions were used as molecular rulers. Under conditions of spatially constrained self-assembly, nanopatterns of alpha,omega-alkanedithiols written by nanografting formed monolayers with heights corresponding to an upright configuration.  相似文献   

11.
A detailed study of the self-assembly and coverage by 1-nonanethiol of sputtered Au surfaces using molecular resolution atomic force microscopy (AFM) and scanning tunneling microscopy (STM) is presented. The monolayer self-assembles on a smooth Au surface composed predominantly of [111] oriented grains. The domains of the alkanethiol monolayer are observed with sizes typically of 5-25 nm, and multiple molecular domains can exist within one Au grain. STM imaging shows that the (4 x 2) superlattice structure is observed as a (3 x 2) structure when imaged under noncontact AFM conditions. The 1-nonanethiol molecules reside in the threefold hollow sites of the Au[111] lattice and aligned along its [112] lattice vectors. The self-assembled monolayer (SAM) contains many nonuniformities such as pinholes, domain boundaries, and monatomic depressions which are present in the Au surface prior to SAM adsorption. The detailed observations demonstrate limitations to the application of 1-nonanethiol as a resist in atomic nanolithography experiments to feature sizes of approximately 20 nm.  相似文献   

12.
We have studied the structure, adsorption kinetics, and barrier properties of self-assembled monolayers of 2-naphthalenethiol on Au using electrochemical techniques, grazing-angle Fourier transform infrared (FTIR) spectroscopy, and scanning tunneling microscopy (STM). The results of cyclic voltammetric and impedance measurements using redox probes show that 2-naphthalenethiol on Au forms a stable and reproducible, but moderately blocking, monolayer. Annealing of the self-assembled monolayer (SAM)-modified surface at 72 +/- 2 degrees C remarkably improves the blocking property of the monolayer of 2-naphthalenethiol on Au. From the study of kinetics of SAM formation, we find that the self-assembly follows Langmuir adsorption isotherm. Our STM and FTIR results show that the molecules are adsorbed with the naphthalene ring tilted from the surface normal by forming a square root 3 x 3 R30 degrees overlayer structure. From our studies, we conclude that the electron-transfer reaction of ferro/ferricyanide in the freshly formed monolayer occurs predominantly through the pinholes and defects present in the monolayer. However, in the case of thermally annealed specimen, although the ferro/ferricyanide reaction is almost completely blocked, the electron-transfer reaction of hexaammineruthenium(III) chloride is not significantly inhibited. It is proposed that the electron-transfer reaction in the case of the ruthenium redox couple takes place by a tunneling mechanism through the high-electron-density aromatic naphthalene ring acting as a bridge between the monolayer-modified electrode and the ruthenium complex.  相似文献   

13.
The synthesis and self-assembly behaviour of porphyrin dodecamers 1H(2) and Zn-1, which consist of twelve porphyrins that are covalently attached to a central aromatic core, is described. According to STM, 1D and 2D NMR studies, and molecular modelling calculations, the porphyrin dodecamers have a yo-yo-shaped structure. Their large pi surface, in combination with their disk-like shape, allows them to form self-assembled structures, which in the case of Zn-1 can be tuned by adding bidentate ligands. The self-assembly of the molecules at the liquid-solid interface of 1-phenyloctane with highly oriented pyrolytic graphite or Au(111) was imaged by using STM. The porphyrin disks in the self-assembled arrays have an edge-on orientation on the surface. The addition of bidentate axial ligands to the Zn-1 molecules in the arrays allows their intermolecular distance to be precisely controlled.  相似文献   

14.
Self-assembled monolayers of biomolecules on atomically planar surfaces offer the prospect of complex combinations of controlled properties, e.g., for bioelectronics. We have prepared a novel hemi-4-alpha-helix bundle protein by attaching two alpha-helical peptides to a cyclo-dithiothreitol (cyclo-DTT) template. The protein was de novo designed to self-assemble in solution to form a 4-alpha-helix bundle, whereas the disulfide moiety enables the formation of a self-assembled monolayer on a Au(111) surface by opening of the disulfide, thus giving rise to a two-step self-assembly process. The 2 x 2-alpha-helix bundle protein and its template were studied by X-ray photo electron spectroscopy (XPS), electrochemical methods, and electrochemical in situ scanning tunneling microscopy (in situ STM). XPS showed that the cyclo-DTT opens on adsorption to a gold surface with the integrity of the 2 x 2-alpha-helix bundle proteins retained. The surface properties of the DTT and 2 x 2-alpha-helix bundle protein adlayer were characterized by interfacial capacitance and impedance techniques. Reductive desorption was used to determine the coverage of the adlayers, giving values of 65 and 16 muC cm(-2) for DTT and 2 x 2-helix, respectively. The 2 x 2-alpha-helix bundle protein adlayers were imaged by in situ STM. The images indicated a dense monolayer according with the voltammetric data. No long-range order could be detected, but two clearly distinct STM contrasts were assigned to 2 x 2-alpha-helix bundle protein molecules oriented in parallel and antiparallel conformations. The template molecule DTT alone forms highly ordered 30-40 nm domains, giving an adlayer density which agreed well with the coverage determined by voltammetry. This could be exploited in STM imaging of mixed DTT/2 x 2-alpha-helix bundle protein monolayers, with clearly distinct STM patterns of the two components.  相似文献   

15.
The tert-butanethiol self-assembled monolayers (SAMs) on Au(111) surfaces were prepared from various solvents and investigated by a combination of scanning tunneling microscopy (STM) and electrochemistry in aqueous environments. High-resolution STM images reveal a (radical(7) x radical(7))R19 degrees surface lattice structure, in contrast with the conventional lattice (radical(3) x radical(3))R30 degrees structure for straight-chain alkanethiol SAMs. Interestingly, such a branched monolayer shows electrochemical rectification toward redox probes. We suggest that electrochemical rectification could be a general characteristic of short-chain branched alkanthiol SAMs, and originate in localized electronic effects.  相似文献   

16.
17.
We report the self-assembly and electrochemical behaviour of the blue copper protein Pseudomonas aeruginosa azurin on Au(111) electrodes in aqueous acetate buffer (pH=4.6). The formation of monolayers of this protein is substantiated by electrochemical measurements. Capacitance results indicate qualitatively that the protein is strongly adsorbed at sub-μM concentrations in a broad potential range (about 700 mV). This is further supported by the attenuation of a characteristic cyclic voltammetric peak of Au(111) in acetate solution with increasing azurin concentration. Reductive desorption is clearly disclosed in NaOH solution (pH=13), strongly suggesting that azurin is adsorbed via its disulphide group. An anodic peak and a cathodic peak associated with the copper centre of azurin are finally observed in the differential pulse voltammograms. These peaks are, interestingly, indicative of long-range electrochemical electron transfer such as paralleled by intramolecular electron transfer between the disulphide anion radical and the copper atom in homogeneous solution, and anticipated by theoretical frames. Together with reported in situ scanning tunnelling microscopy (STM) results they constitute the first case for electrochemistry of self-assembled monolayers of azurin, even redox proteins. This integrated investigation provides a new approach to both structure and function of adsorbed redox metalloproteins at the molecular level.  相似文献   

18.
Density functional theory structure calculations at 0 K and simulations at 300 K of observed high-resolution in situ scanning tunneling microscopy (STM) images reveal three different atomic-interface structures for the self-assembled monolayers (SAMs) of three isomeric butanethiols on Au(111): direct binding to the Au(111) surface without pitting, binding to adatoms above a regular surface with extensive pitting, and binding to adatoms with local surface vacancies and some pitting. Thermal motions are shown to produce some observed STM features, with a very tight energy balance controlling the observed structures. Variation of the degree of substitution on the α carbon is found to significantly change the relative energies for interaction of the different types of adatom structures with the surface, while the nature of the surface cell, controlled primarily by inter-adsorbate steric interactions, controls substrate reorganization energies and adsorbate distortion energies. Most significantly, by manipulating these features, chemical control of the adsorbate can produce stable interfaces with surface pitting eliminated, providing new perspectives for technological applications of SAMs.  相似文献   

19.
We demonstrate a new type of Au{111} substrate that is both atomically flat and optically transparent, which consists of solution-grown flat gold nanoparticles (FGNPs) deposited on indium tin oxide (ITO)-coated glass. We show that FGNPs are atomically flat single-crystal plates with large {111} faces that expose only 2-4 atomic layers. These FGNPs are excellent platforms for alkanethiol self-assembled monolayers (SAMs) and for high-resolution scanning tunneling microscopy (STM). Our supported FGNPs are also low-cost Au{111} substrates, employing only basic wet chemical techniques in preparation. This approach should be broadly applicable to other types of substrates for scanning probe microscopies.  相似文献   

20.
We investigate the influence of the native staircase nanostructure of a Au(111) vicinal surface upon the self-assembly of alkylthiols. Through a comparison with standard alkylthiol SAMs deposited on Au(111) flat surfaces, we show that on the vicinal surface the octanethiol monolayer (OT SAM) reproduces the nanopatterned staircase structure, giving rise to a new kind of molecular layer self-ordered on the nanometer scale. The SAM's structure is determined by UHV STM and PM-IRRAS measurements and exhibits a specific behavior relative to the nanostructured substrate. The differences from the film grown on Au(111) are attributed to the influence of step edges on the molecular packing, leading to a specific 2D crystallographic order through the step edges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号