首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We explain how multiplicative bundle gerbes over a compact, connected and simple Lie group G lead to a certain fusion category of equivariant bundle gerbe modules given by pre-quantizable Hamiltonian LG-manifolds arising from Alekseev-Malkin-Meinrenken’s quasi-Hamiltonian G-spaces. The motivation comes from string theory namely, by generalising the notion of D-branes in G to allow subsets of G that are the image of a G-valued moment map we can define a ‘fusion of D-branes’ and a map to the Verlinde ring of the loop group of G which preserves the product structure. The idea is suggested by the theorem of Freed-Hopkins-Teleman. The case where G is not simply connected is studied carefully in terms of equivariant bundle gerbe modules for multiplicative bundle gerbes.  相似文献   

2.
3.
Supergravity provides the effective field theories for string compactifications. The deformation of the maximal supergravities by non-abelian gauge interactions is only possible for a restricted class of charges. Generically these ‘gaugings’ involve a hierarchy of p-form fields which belong to specific representations of the duality group. The group-theoretical structure of this p-form hierarchy exhibits many interesting features. In the case of maximal supergravity the class of allowed deformations has intriguing connections with M/string theory. This study is based on a talk presented at Quantum gravity: challenges and perspectives, Heraeus Seminar, Bad Honnef, 14–16 April 2008.  相似文献   

4.
Eric A Lord 《Pramana》1975,4(4):164-170
A new generalisation of Einstein’s theory is proposed which is invariant under conformal mappings. Two scalar fields are introduced in addition to the metric tensor field, so that two special choices of gauge are available for physical interpretation, the ‘Einstein gauge’ and the ‘atomic gauge’. The theory is not unique but contains two adjustable parameters ζ anda. Witha=1 the theory viewed from the atomic gauge is Brans-Dicke theory (ω=−3/2+ζ/4). Any other choice ofa leads to a creation-field theory. In particular the theory given by the choicea=−3 possesses a cosmological solution satisfying Dirac’s ‘large numbers’ hypothesis.  相似文献   

5.
Sunil Mukhi 《Pramana》2000,54(4):543-559
In addition to being a prime candidate for a fundamental unified theory of all interactions in nature, string theory provides a natural setting to understand gauge field theories. This is linked to the concept of ‘D-branes’: extended, solitonic excitations of string theory which can be studied using techniques of string theory and which support gauge fields localized along their world-volumes. It follows that the techniques of string theory can be very useful even for those particle physicists who are not specifically interested in unification and/or quantum gravity. In this talk I attempt to review how strings help us to understand fields. The discussion is restricted to 3+1 spacetime dimensions.  相似文献   

6.
We prove two theorems which concern difficulties in the formulation of the quantum theory of a linear scalar field on a spacetime, , with a compactly generated Cauchy horizon. These theorems demonstrate the breakdown of the theory at certain base points of the Cauchy horizon, which are defined as ‘past terminal accumulation points’ of the horizon generators. Thus, the theorems may be interpreted as giving support to Hawking's ‘Chronology Protection Conjecture’, according to which the laws of physics prevent one from manufacturing a ’time machine‘. Specifically, we prove: Theorem 1. There is no extension to of the usual field algebra on the initial globally hyperbolic region which satisfies the condition of F-locality at any base point. In other words, any extension of the field algebra must, in any globally hyperbolic neighbourhood of any base point, differ from the algebra one would define on that neighbourhood according to the rules for globally hyperbolic spacetimes. Theorem 2. The two-point distribution for any Hadamard state defined on the initial globally hyperbolic region must (when extended to a distributional bisolution of the covariant Klein-Gordon equation on the full spacetime) be singular at every base point x in the sense that the difference between this two point distribution and a local Hadamard distribution cannot be given by a bounded function in any neighbourhood (in M × M) of (x,x). In consequence of Theorem 2, quantities such as the renormalized expectation value of φ2 or of the stress-energy tensor are necessarily ill-defined or singular at any base point. The proof of these theorems relies on the ‘Propagation of Singularities’ theorems of Duistermaat and H?rmander. Received: 14 March 1996/Accepted: 11 June 1996  相似文献   

7.
We investigate a Lie algebra-type κ-deformed Minkowski spacetime with undeformed Lorentz algebra and mutually commutative vector-like Dirac derivatives. There are infinitely many realizations of κ-Minkowski space. The coproduct and the star product corresponding to each of them are found. An explicit connection between realizations and orderings is established and the relation between the coproduct and the star product, provided through an exponential map, is proved. Utilizing the properties of the natural realization, we construct a scalar field theory on κ-deformed Minkowski space and show that it is equivalent to the scalar, nonlocal, relativistically invariant field theory on the ordinary Minkowski space. This result is universal and does not depend on the realizations, i.e. the orderings, used.  相似文献   

8.
Chiral orbifold models are defined as gauge field theories with a finite gauge group Γ. We start with a conformal current algebra associated with a connected compact Lie group G and a negative definite integral invariant bilinear form on its Lie algebra. Any finite group Γ of inner automorphisms or (in particular, any finite subgroup of G) gives rise to a gauge theory with a chiral subalgebra of local observables invariant under Γ. A set of positive energy modules is constructed whose characters span, under some assumptions on Γ, a finite dimensional unitary representation of . We compute their asymptotic dimensions (thus singling out the nontrivial orbifold modules) and find explicit formulae for the modular transformations and hence, for the fusion rules. As an application we construct a family of rational conformal field theory (RCFT) extensions of W 1+∞ that appear to provide a bridge between two approaches to the quantum Hall effect. Received: 5 December 1996 / Accepted: 1 April 1997  相似文献   

9.
We analyze certain subgroups of real and complex forms of the Lie group E8, and deduce that any “Theory of Everything” obtained by embedding the gauge groups of gravity and the Standard Model into a real or complex form of E8 lacks certain representation-theoretic properties required by physical reality. The arguments themselves amount to representation theory of Lie algebras in the spirit of Dynkin’s classic papers and are written for mathematicians.  相似文献   

10.
This study of gauge field theories on -deformed Minkowski spacetime extends previous work on field theories on this example of a non-commutative spacetime. We construct deformed gauge theories for arbitrary compact Lie groups using the concept of enveloping algebra-valued gauge transformations and the Seiberg-Witten formalism. Derivative-valued gauge fields lead to field strength tensors as the sum of curvature- and torsion-like terms. We construct the Lagrangians explicitly to first order in the deformation parameter. This is the first example of a gauge theory that possesses a deformed Lorentz covariance.Received: 17 December 2003, Revised: 6 May 2004, Published online: 23 June 2004  相似文献   

11.
We explore further the proposal [Hu, B. L. (1996). General relativity as geometro-hydrodynamics. (Invited talk at the Second Sakharov Conference, Moscow, May 1996); gr-qc/9607070.] that general relativity is the hydrodynamic limit of some fundamental theories of the microscopic structure of spacetime and matter, i.e., spacetime described by a differentiable manifold is an emergent entity and the metric or connection forms are collective variables valid only at the low-energy, long-wavelength limit of such micro-theories. In this view it is more relevant to find ways to deduce the microscopic ingredients of spacetime and matter from their macroscopic attributes than to find ways to quantize general relativity because it would only give us the equivalent of phonon physics, not the equivalents of atoms or quantum electrodynamics.It may turn out that spacetime is merely a representation of certain collective state of matter in some limiting regime of interactions, which is the view expressed by Sakharov [Sakharov, A. D. (1968). Soviet Physics-Doklady 12, 1040–1041; Sakharov, A. D. (1967). Vacuum quantum fluctuations in curved space and the theory of gravitation. Doklady Akad. Nauk S.S.R. 177, 70; Adler, S. L. (1982). Reviews of Modern Physics 54, 729]. In this talk, working within the conceptual framework of geometro-hydrodynamics, we suggest a new way to look at the nature of spacetime inspired by Bose–Einstein condensate (BEC) physics. We ask the question whether spacetime could be a condensate, even without the knowledge of what the‘atom of spacetime’ is. We begin with a summary of the main themes for this new interpretation of cosmology and spacetime physics, and the ‘bottom-up’ approach to quantum gravity. We then describe the ‘Bosenova’ experiment of controlled collapse of a BEC and our cosmology-inspired interpretation of its results. We discuss the meaning of a condensate in different context. We explore how far this idea can sustain, its advantages and pitfalls, and its implications on the basic tenets of physics and existing programs of quantum gravity.  相似文献   

12.
The gauge coupling constants in the electroweak standard model can be written as mass ratios, e.g. the coupling constant for isospin interactions with the mass of the charged weak boson and the mass parameter characterizing the ground state degeneracy. A theory is given which relates the two masses in such a ratio to invariants which characterize the representations of a noncompact nonabelian group with real rank 2. The two noncompact abelian subgroups are operations for time and for a hyperbolic position space in a model for spacetime, homogeneous under dilation and Lorentz group action. The representations of the spacetime model embed the bound state representations of hyperbolic position space as seen in the nonrelativistic hydrogen atom. Interactions like Coulomb or Yukawa interactions are described by Lie algebra representation coefficients. A quantitative determination of the ratio of the invariants for position- and time-related operations, determined by the spacetime representation, gives the right order of magnitude for the gauge coupling constants.  相似文献   

13.
It is a well accepted principle that finite-energy static solutions in the classical relativistic gauge field theory over the (2 + 1)-dimensional Minkowski spacetime must be electrically neutral. We call such a statement the Julia–Zee theorem. In this paper, we present a mathematical proof of this fundamental structural property.  相似文献   

14.
We revisit the gauging of rigid symmetries in two-dimensional bosonic sigma models with a Wess-Zumino term in the action. Such a term is related to a background closed 3-form H on the target space. More exactly, the sigma-model Feynman amplitudes of classical fields are associated to a bundle gerbe with connection of curvature H over the target space. Under conditions that were unraveled more than twenty years ago, the classical amplitudes may be coupled to the topologically trivial gauge fields of the symmetry group in a way which assures infinitesimal gauge invariance. We show that the resulting gauged Wess-Zumino amplitudes may, nevertheless, exhibit global gauge anomalies that we fully classify. The general results are illustrated on the example of the WZW and the coset models of conformal field theory. The latter are shown to be inconsistent in the presence of global anomalies. We introduce a notion of equivariant gerbes that allow an anomaly-free coupling of the Wess-Zumino amplitudes to all gauge fields, including the ones in non-trivial principal bundles. Obstructions to the existence of equivariant gerbes and their classification are discussed. The choice of different equivariant structures on the same bundle gerbe gives rise to a new type of discrete-torsion ambiguities in the gauged amplitudes. An explicit construction of gerbes equivariant with respect to the adjoint symmetries over compact simply connected simple Lie groups is given.  相似文献   

15.
The concept of ‘D-Differentiation’, which, in the context of smooth manifolds, generalises Lie and covariant differentiation, is extended to R  ∞ -supermanifolds under the name of ‘Super D-Differentiation’. This is done by defining new (non-linear) mappings, called ‘μ-mappings’ and by relating their non-linearity to the Leibniz rule that a derivation must satisfy when it acts on a tensor product. The resulting axiomatics, which is basis-independent and coordinate-free, is then expressed in a general basis (not necessarily holonomic). Super Lie and Super covariant differentiation are, amongst others, special cases of Super D-Differentiation. In particular, the transformation rules for the connection coefficients and the commutation coefficients of non-holonomic bases are obtained. These special cases are found to be in agreement with the DeWitt Super covariant and Super Lie derivatives.   相似文献   

16.
The gauging of free differential algebras (FDA's) produces gauge field theories containing antisymmetric tensors. The FDA's extend the Cartan-Maurer equations of ordinary Lie algebras by incorporating p-form potentials (p>1). We study here the algebra of FDA transformations. To every p-form in the FDA, we associate an extended Lie derivative l generating a corresponding gauge transformation. The field theory based on the FDA is invariant under these new transformations. This gives geometrical meaning to the antisymmetric tensors. The algebra of Lie derivatives is shown to close and provides the dual formulation of FDA's.  相似文献   

17.
Monstrous Branes     
 We study D-branes in the bosonic closed string theory whose automorphism group is the Bimonster group (the wreath product of the Monster simple group with ℤ2). We give a complete classification of D-branes preserving the chiral subalgebra of Monster invariants and show that they transform in a representation of the Bimonster. Our results apply more generally to self-dual conformal field theories which admit the action of a compact Lie group on both the left- and right-moving sectors. Received: 20 February 2002 / Accepted: 17 August 2002 Published online: 19 December 2002 Communicated by R.H. Dijkgraaf  相似文献   

18.
A manifold is multisymplectic, or more specifically n-plectic, if it is equipped with a closed nondegenerate differential form of degree n + 1. In previous work with Baez and Hoffnung, we described how the ‘higher analogs’ of the algebraic and geometric structures found in symplectic geometry should naturally arise in 2-plectic geometry. In particular, just as a symplectic manifold gives a Poisson algebra of functions, any 2-plectic manifold gives a Lie 2-algebra of 1-forms and functions. Lie n-algebras are examples of L -algebras: graded vector spaces equipped with a collection of skew-symmetric multi-brackets that satisfy a generalized Jacobi identity. Here, we generalize our previous result. Given an n-plectic manifold, we explicitly construct a corresponding Lie n-algebra on a complex consisting of differential forms whose multi-brackets are specified by the n-plectic structure. We also show that any n-plectic manifold gives rise to another kind of algebraic structure known as a differential graded Leibniz algebra. We conclude by describing the similarities between these two structures within the context of an open problem in the theory of strongly homotopy algebras. We also mention a possible connection with the work of Barnich, Fulp, Lada, and Stasheff on the Gelfand–Dickey–Dorfman formalism.  相似文献   

19.
The quantized free Dirac field is considered on Minkowski spacetime (of general dimension). The Dirac field is coupled to an external scalar potential whose support is finite in time and which acts by a Moyal-deformed multiplication with respect to the spatial variables. The Moyal-deformed multiplication corresponds to the product of the algebra of a Moyal plane described in the setting of spectral geometry. It will be explained how this leads to an interpretation of the Dirac field as a quantum field theory on Moyal-deformed Minkowski spacetime (with commutative time) in a setting of Lorentzian spectral geometries of which some basic aspects will be sketched. The scattering transformation will be shown to be unitarily implementable in the canonical vacuum representation of the Dirac field. Furthermore, it will be indicated how the functional derivatives of the ensuing unitary scattering operators with respect to the strength of the non-commutative potential induce, in the spirit of Bogoliubov’s formula, quantum field operators (corresponding to observables) depending on the elements of the non-commutative algebra of Moyal-Minkowski spacetime.  相似文献   

20.
We study some aspects of Maldacena's large-N correspondence between superconformal gauge theory on the D3-brane and maximal supergravity on AdS by introducing macroscopic strings as heavy (anti-) quark probes. The macroscopic strings are semi-infinite Type IIB strings ending on a D3-brane world-volume. We first study deformation and fluctuation of D3-branes when a macroscopic BPS string is attached. We find that both dynamics and boundary conditions agree with those for the macroscopic string in anti-de Sitter supergravity. As a by-product we clarify how Polchinski's Dirichlet and Neumann open string boundary conditions arise dynamically. We then study the non-BPS macroscopic string–anti-string pair configuration as a physical realization of a heavy quark Wilson loop. We obtain the static potential from the supergravity side and find that the potential exhibits non-analyticity of the square-root branch cut in the 't Hooft coupling parameter. We put forward non-analyticity as a prediction for large-N gauge theory in the strong 't Hooft coupling limit. By turning on the Ramond–Ramond zero-form potential, we also study the vacuum angle dependence of the static potential. We finally discuss the possible dynamical realization of the heavy N-prong string junction and of the large-N loop equation via a local electric field and string recoil thereof. Throughout comparisons of the AdS–CFT correspondence, we find that a crucial role is played by “geometric duality” between the UV and IR scales in directions perpendicular to the D3-brane and parallel ones, explaining how the AdS spacetime geometry emerges out of four-dimensional gauge theory at strong coupling. Received: 21 September 2001 / Published online: 12 November 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号