首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 444 毫秒
1.
In the field of fast ignition scheme, self-generated magnetic fields via beam resistive filamentation have a significant role in the angular divergence of the relativistic electron beam, which can be affected by the intensity of other self-generated magnetic fields. In this context, the effects of pressure gradient sources arising from temperature and density gradient of the pellet along the beam flow direction are investigated. The results showed that the resistive filamentation instability can be strongly amplified compared to the fully homogeneous plasma. In this respect, for the distance away from the critical surface, the instability is protected for a longer wave number. Also, the beam and plasma properties such as the beam relativistic factor, the beam number density, and the degree of the plasma temperature anisotropy might be effective.  相似文献   

2.
A correction to the Jeans stability criterion due to dissipation is established for the case of dilute high temperature gases. This effect is only relevant in the relativistic scenario and includes additional terms due to a density gradient driven heat flux, a non-vanishing bulk viscosity and the space-time dependent gravitational potential first order fluctuations. The result is obtained by thoroughly analyzing the exponentially growing modes present in the dynamics of density fluctuations in the linearized relativistic Navier–Stokes regime. The corrections to the corresponding Jeans mass and wavenumber are explicitly obtained and are compared to the non-relativistic and non-dissipative values using the transport coefficients obtained in the BGK approximation.  相似文献   

3.
We study the angular distribution of relativistic electrons generated through laser-plasma interaction with pulse intensity varying from 10(18) W/cm2 up to 10(21) W/cm2 and plasma density ranging from 10 times up to 160 times critical density with the help of 2D and 3D particle-in-cell simulations. This study gives clear evidence that the divergence of the beam is an intrinsic property of the interaction of a laser pulse with a sharp density gradient. It is entirely due to the excitation of large static magnetic fields in the layer of interaction. The energy deposited in this layer increases drastically the temperature of the plasma independently of the initial temperature. This makes the plasma locally collisionless and the simulation relevant for the current experiments.  相似文献   

4.
The filamentation instability is one of the basic beam-plasma instabilities that play a significant role in the energy deposition mechanism of the relativistic electrons generated by the laser-plasma interaction in the fast ignition scenario. In this paper, the effect of the density gradient into plasma on the filamentation instability was investigated in the Weibel unstable plasma, where the plasma temperature anisotropy can play an important role. Results indicated that the density gradient enhances the instability growth rate so that decreasing the density gradient from the critical surface to the core of fuel leads to instability for longer regions in k space. Also, investigations in the region close to the critical surface showed that for decreasing the beam number density nb ≤ 0.01n0, the instability occurs for while this can be different for higher values. Increasing the beam relativistic factor causes a decreasing peak of instability growth rate because of a reduction in beam current, whereas the initial thermal spread of plasma amplifies the filamentation instability.  相似文献   

5.
A method for the controlled generation of intense high frequency electromagnetic fields by a breaking Langmuir wave (relativistic flying mirrors) in a gradually inhomogeneous plasma is proposed. The wave breaking threshold depends on the local plasma density gradient. Compression, chirping and frequency multiplication of an electromagnetic wave reflected from relativistic mirrors is demonstrated using Particle-In-Cell simulations. Adjusting the shape of the density profile enables control of the reflected light properties.  相似文献   

6.
Modified Korteweg-deVries equation (mK-dV), which governs the behavior of ion acoustic solitons in a relativistic warm plasma with density gradient, is derived. The electron inertia is also taken into account which is important when the streaming ions are present in the plasma. A solution of the mK-dV equation is obtained for the constant density gradient. When the ion acoustic soliton propagates into the lower plasma density region, its amplitude and energy increase, but the width decreases; the same is the case for the stronger density gradients  相似文献   

7.
孟续军  孙永盛 《计算物理》1990,7(4):467-471
本文用含有电子自作用修正的TF势求解了任意温度物质密度下的Schrodinger波动方程。为了能够处理相对论效应,波动方程中又引入了质速修正项和Darwin项以及自旋-轨道耦合修正项。本文着重计算了Fe、Rb在几种温度密度下的情况,并在表中给出了计算结果与更准确结果的比较。用现行方法获得的数据与HFS方法的结果也是可以媲美的。  相似文献   

8.
张建树  韩银录 《光子学报》1998,27(2):185-188
在Walecka模型的基础上,应用热动力学理论和Dirac-Bruckner-Hartree-Fock方法,研究了有限温度不同密度下核子相对论微观光学势及其相应的薛定谔等效势和平均自由程.计算结果表明,核子薛定谔等效势和平均自由程对核密度的依赖相当敏感,当核密度增大时对核密度的依赖变得更为敏感.  相似文献   

9.
The self-focusing of a laser pulse through a tunnel ionizing gas (helium) has been studied in both non-relativistic and relativistic regimes, relaxing the near-axis approximation. In the non-relativistic regime, the laser pulse produces multiple ionization of the gas and faces strong defocusing due to the steep radial density gradient caused by the same. The uneven defocusing of paraxial and marginal rays leads to a beam acquiring a ring shaped intensity distribution. In the relativistic regime, the laser pulse produces fully ionized plasma within a few wave periods, subsequently the relativistic mass effect and the ponderomotive force induced electron cavitation cause periodic self-focusing. PACS 52.38.Hb; 42.65.Jx  相似文献   

10.
采用理论分析和数值模拟研究了考虑相对论效应的自生磁场及其产生机制,给出了自生磁场的解析表达式,得到了温度梯度和密度梯度的非共线性所引起的自生磁场空间分布的时间演化关系。数值结果表明,当峰值强度为1019 W/cm2的激光作用于凹形靶前表面时,在等离子体表面领域观察到的自生磁场最大值为51102 T量级,与实验测量结果相符合。  相似文献   

11.
王伟民  郑春阳 《物理学报》2006,55(1):310-320
讨论高斯型强激光束在具有初始柱对称密度分布的低密度冷等离子体中传播时,等离子体密度分布的不同对激光自聚焦的影响.推导出可以判断更有利于自聚焦发生的评价函数,这样通过比较不同密度分布的评价函数值就可以判断哪种密度分布更有利于自聚焦的发生.为了说明这种方法的有效性,对评价函数进行分析得出:在相同的激光场中等离子体柱的轴心密度给定时(以激光的光轴为轴),离轴越远的地方密度越大及密度变化越陡,自聚焦越容易发生;相对论效应与有质动力共同作用比相对论的单独作用,自聚焦更容易发生.数值模拟证实了评价函数能准确的预测在不 关键词: 自聚焦 相对论效应 有质动力 评价函数  相似文献   

12.
13.
The interaction of a relativistic classical electron with an inhomogeneous electromagnetic field is investigated. In second-order perturbation theory the motion is separated into fast and slow motions, and the relativistic Newtonian equation is averaged over the fast oscillations. The rate of change obtained for the slow component of the electron momentum is interpreted as a relativistic ponderomotive force. The result is generalized to the relativistic case of the wellknown expression for the Gaponov-Miller force acting on an electron at rest. The expressions obtained for the relativistic ponderomotive forces are very complicated in the general case. They simplify in the limit of a stationary field (pulses of long duration) and a small gradient. The most typical and simplest special case of an inhomogeneous field—a stationary plane-focused beam—is investigated. The main difference between relativistic ponderomotive forces and their nonrelativistic limit is they have multiple components. In addition to the usual force directed along the gradient of the field, the relativistic case is also characterized by force components that do not have the form of the gradient of a potential and are parallel to the wave vector and the direction of the field polarization. It is shown that when a relativistic electron travels in a direction close to the direction of the wave vector of a focused laser beam, these components can greatly exceed the gradient force. A force directed along the field polarization vector arises even when the gradient of the field in this direction is zero. Zh. éksp. Teor. Fiz. 116, 1198–1209 (October 1999)  相似文献   

14.
15.
Relativistic kinetic theory predicts substantial modifications to the dissipation mechanisms of a dilute gas. For the heat flux, these include (in the absence of external forces) a correction to the thermal conductivity and the appearance of a new, purely relativistic, term proportional to the density gradient. In this work we obtain such constitutive equation for the particular case of a bidimensional gas. The calculation is based on the Chapman–Enskog solution to the relativistic Boltzmann equation and yields analytical expressions for the corresponding transport coefficients, which are evaluated for the particular case of hard disks. These results will be useful for numerical simulations and may be applied to bidimensional non-dense materials.  相似文献   

16.
研制了激光等离子体二维相对论电磁粒子模拟程序(2DCIC)。追踪几万甚至百万个模拟粒子在外加激光场和自洽场中运动,自洽地计算电荷和电流密度,求解完全的Maxwel方程,电子的相对论运动方程和离子的牛顿运动方程,辅以灵活的诊断研究波-波,波-粒子相互作用的发生、发展和饱和的细节以及时间演化规律。激光可以正入射,也可以斜入射;等离子体可以是均匀密度,也可以具有密度梯度;为了节约机时,还发展了并行运算。物理模型参数可调,既适用于研究激光聚变等离子体相互作用,也适用于超短脉冲超强激光等离子体相互作用和其它等离子体问题。经过多次试算检验,对等离子体平衡态进行了计算研究,对于超短脉冲超强激光的传播也进行了初步模拟计算。  相似文献   

17.
I. Kotelnikov 《Physics letters. A》2010,374(48):4864-4871
Finite temperature effects on the relativistic radial equilibrium of a non-neutral plasma are analyzed. An equation for an effective potential governing the self-consistent radial density profile is derived in the case of global thermal equilibrium. The effect of a finite temperature turns out to be particularly strong for the fast mode of rigid plasma rotation, where the density profile can extend beyond the cold limiting radius.  相似文献   

18.
We extend a method by Goldman to include conditions which are both necessary and sufficient for construction of physically acceptable relativistic fluid spheres. We thus give the conditions for having finite and non-negative pressure and finite and positive density inside the fluid sphere. We also give conditions for the pressure gradient and the density gradient to be negative and for the speed of sound to be less than the speed of light in vacuum. We further give the condition for the trace of the energy-momentum tensor to be positive and for the relativistic adiabatic index to be larger than 4/3. A model given by Goldman is examined, and we find that all these conditions are fulfilled. We further show that this model is stable. However, we also give a class ofnew exact solutions, and show that these models are physically valied. These models are also stable with respect to small radial disturbances. We calculated the total mass, the density and the physical radius for these fluid spheres. Some of these spheres turn out to be extremely compact. They can have a radius of only several centimeters, but typically contain the mass of a planet. We put these models forward as tentative exact solutions for spheres which could contain the hidden dark matter in the universe.  相似文献   

19.
采用相对论平均场方法研究了致密物质的性质, 构造了包括较宽温度、 同位旋不对称度和密度范围的适用于超新星模拟研究的状态方程, 均匀物质由相对论平均场理论描述, 非均匀物质由托马斯 费米近似给出。讨论了包含超子自由度的中子星物质的状态方程。 计算结果表明, 包含超子可以有效地软化高密度区的状态方程, Λ超子的超流态有可能存在于大质量中子星内部。The properties of dense matter are studied within the relativistic mean field theory. The equation of state (EOS) of dense matter are constructed covering a wide range of temperature, proton fraction, and density for the use of supernova simulations. The relativistic mean field theory is employed to describe the uniform matter, while the Thomas Fermi approximation is adopted to describe the non uniform matter. The EOS of neutron star matter is discussed with the inclusion of hyperons. It is found that the EOS at high density can be significantly softened by the inclusion of hyperons. The 1S0 superfluidity of Λ hyperons may exist in massive neutron stars.  相似文献   

20.
李铭 《大学物理》2002,21(1):34-35
对《大学物理》2000年第11期上发表的《氢原子的磁矩-对自旋的讨论之一》一提出了不同的看法,认为该错把相对论的流密度当成了非相对论的流密度,前不能在非相对论近似下过滤到后,在相对论情况下,自旋和轨道耦合在一起,不能互相独立,在非相对论情况下自旋独立于轨道运动而存在;因而,自旋不是轨道角动量的相对论效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号