首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Finsler geometry, minimal surfaces with respect to the Busemann-Hausdorff measure and the Holmes-Thompson measure are called BH-minimal and HT-minimal surfaces, respectively. In this paper, we give the explicit expressions of BH-minimal and HT-minimal rotational hypersurfaces generated by plane curves rotating around the axis in the direction of [(b)\tilde]\sharp{\tilde{\beta}^{\sharp}} in Minkowski (α, β)-space (\mathbbVn+1,[(Fb)\tilde]){(\mathbb{V}^{n+1},\tilde{F_b})} , where \mathbbVn+1{\mathbb{V}^{n+1}} is an (n+1)-dimensional real vector space, [(Fb)\tilde]=[(a)\tilde]f([(b)\tilde]/[(a)\tilde]), [(a)\tilde]{\tilde{F_b}=\tilde{\alpha}\phi(\tilde{\beta}/\tilde{\alpha}), \tilde{\alpha}} is the Euclidean metric, [(b)\tilde]{\tilde{\beta}} is a one form of constant length b:=||[(b)\tilde]||[(a)\tilde], [(b)\tilde]\sharp{b:=\|\tilde{\beta}\|_{\tilde{\alpha}}, \tilde{\beta}^{\sharp}} is the dual vector of [(b)\tilde]{\tilde{\beta}} with respect to [(a)\tilde]{\tilde{\alpha}} . As an application, we first give the explicit expressions of the forward complete BH-minimal rotational surfaces generated around the axis in the direction of [(b)\tilde]\sharp{\tilde{\beta}^{\sharp}} in Minkowski Randers 3-space (\mathbbV3,[(a)\tilde]+[(b)\tilde]){(\mathbb{V}^{3},\tilde{\alpha}+\tilde{\beta})} .  相似文献   

2.
On the assumption of the truth of the Riemann hypothesis for the Riemann zeta function we construct a class of modified von-Mangoldt functions with slightly better mean value properties than the well known function L\Lambda . For every e ? (0,1/2)\varepsilon \in (0,1/2) there is a [(L)\tilde] : \Bbb N ? \Bbb C\tilde {\Lambda} : \Bbb N \to \Bbb C such that¶ i) [(L)\tilde] (n) = L (n) (1 + O(n-1/4  logn))\tilde {\Lambda} (n) = \Lambda (n) (1 + O(n^{-1/4\,} \log n)) and¶ii) ?n \leqq x [(L)\tilde] (n) (1- [(n)/(x)]) = [(x)/2] + O(x1/4+e) (x \geqq 2).\sum \limits_{n \leqq x} \tilde {\Lambda} (n) \left(1- {{n}\over{x}}\right) = {{x}\over{2}} + O(x^{1/4+\varepsilon }) (x \geqq 2).¶Unfortunately, this does not lead to an improved error term estimation for the unweighted sum ?n \leqq x [(L)\tilde] (n)\sum \limits_{n \leqq x} \tilde {\Lambda} (n), which would be of importance for the distance between consecutive primes.  相似文献   

3.
We define a generalized Li coefficient for the L-functions attached to the Rankin–Selberg convolution of two cuspidal unitary automorphic representations π and π of GLm(\mathbbAF)GL_{m}(\mathbb{A}_{F}) and GLm(\mathbbAF)GL_{m^{\prime }}(\mathbb{A}_{F}) . Using the explicit formula, we obtain an arithmetic representation of the n th Li coefficient lp,p(n)\lambda _{\pi ,\pi ^{\prime }}(n) attached to L(s,pf×[(p)\tilde]f)L(s,\pi _{f}\times \widetilde{\pi}_{f}^{\prime }) . Then, we deduce a full asymptotic expansion of the archimedean contribution to lp,p(n)\lambda _{\pi ,\pi ^{\prime }}(n) and investigate the contribution of the finite (non-archimedean) term. Under the generalized Riemann hypothesis (GRH) on non-trivial zeros of L(s,pf×[(p)\tilde]f)L(s,\pi _{f}\times \widetilde{\pi}_{f}^{\prime }) , the nth Li coefficient lp,p(n)\lambda _{\pi ,\pi ^{\prime }}(n) is evaluated in a different way and it is shown that GRH implies the bound towards a generalized Ramanujan conjecture for the archimedean Langlands parameters μ π (v,j) of π. Namely, we prove that under GRH for L(s,pf×[(p)\tilde]f)L(s,\pi _{f}\times \widetilde{\pi}_{f}) one has |Remp(v,j)| £ \frac14|\mathop {\mathrm {Re}}\mu_{\pi}(v,j)|\leq \frac{1}{4} for all archimedean places v at which π is unramified and all j=1,…,m.  相似文献   

4.
Let Ω be a domain in ${\mathbb{C}^{2}}Let Ω be a domain in \mathbbC2{\mathbb{C}^{2}}, and let p: [(W)\tilde]? \mathbbC2{\pi: \tilde{\Omega}\rightarrow \mathbb{C}^{2}} be its envelope of holomorphy. Also let W¢=p([(W)\tilde]){\Omega'=\pi(\tilde{\Omega})} with i: W\hookrightarrow W¢{i: \Omega \hookrightarrow \Omega'} the inclusion. We prove the following: if the induced map on fundamental groups i*:p1(W) ? p1(W¢){i_{*}:\pi_{1}(\Omega) \rightarrow \pi_{1}(\Omega')} is a surjection, and if π is a covering map, then Ω has a schlicht envelope of holomorphy. We then relate this to earlier work of Fornaess and Zame.  相似文献   

5.
We prove that the generalized Temperley–Lieb algebras associated with simple graphs Γ have linear growth if and only if the graph Γ coincides with one of the extended Dynkin graphs [(A)\tilde]n {\tilde A_n} , [(D)\tilde]n {\tilde D_n} , [(E)\tilde]6 {\tilde E_6} , or [(E)\tilde]7 {\tilde E_7} . An algebra TLG, t T{L_{\Gamma, \tau }} has exponential growth if and only if the graph Γ coincides with none of the graphs An {A_n} , Dn {D_n} , En {E_n} , [(A)\tilde]n {\tilde A_n} , [(D)\tilde]n {\tilde D_n} , [(E)\tilde]6 {\tilde E_6} , and [(E)\tilde]7 {\tilde E_7} .  相似文献   

6.
We give a formula for the one-parameter strongly continuous semigroups ${e^{-tL^{\lambda}}}We give a formula for the one-parameter strongly continuous semigroups e-tLl{e^{-tL^{\lambda}}} and e-t [(A)\tilde]{e^{-t \tilde{A}}}, t > 0 generated by the generalized Hermite operator Ll, l ? R\{0}{L^{\lambda}, \lambda \in {\bf R}\backslash \{0\}} respectively by the generalized Landau operator ?. These formula are derived by means of pseudo-differential operators of the Weyl type, i.e. Weyl transforms, Fourier-Wigner transforms and Wigner transforms of some orthonormal basis for L 2(R 2n ) which consist of the eigenfunctions of the generalized Hermite operator and of the generalized Landau operator. Applications to an L 2 estimate for the solutions of initial value problems for the heat equations governed by L λ respectively ?, in terms of L p norm, 1 ≤ p ≤ ∞ of the initial data are given.  相似文献   

7.
Let (g, K)(k) be a CMC (vacuum) Einstein flow over a compact three-manifold Σ with non-positive Yamabe invariant (Y(Σ)). As noted by Fischer and Moncrief, the reduced volume ${\mathcal{V}(k)=\left(\frac{-k}{3}\right)^{3}{\rm Vol}_{g(k)}(\Sigma)}Let (g, K)(k) be a CMC (vacuum) Einstein flow over a compact three-manifold Σ with non-positive Yamabe invariant (Y(Σ)). As noted by Fischer and Moncrief, the reduced volume V(k)=(\frac-k3)3Volg(k)(S){\mathcal{V}(k)=\left(\frac{-k}{3}\right)^{3}{\rm Vol}_{g(k)}(\Sigma)} is monotonically decreasing in the expanding direction and bounded below by Vinf=(\frac-16Y(S))\frac32{\mathcal{V}_{\rm \inf}=\left(\frac{-1}{6}Y(\Sigma)\right)^{\frac{3}{2}}}. Inspired by this fact we define the ground state of the manifold Σ as “the limit” of any sequence of CMC states {(g i , K i )} satisfying: (i) k i  = −3, (ii) Viˉ Vinf{\mathcal{V}_{i}\downarrow \mathcal{V}_{\rm inf}}, (iii) Q 0((g i , K i )) ≤ Λ, where Q 0 is the Bel–Robinson energy and Λ is any arbitrary positive constant. We prove that (as a geometric state) the ground state is equivalent to the Thurston geometrization of Σ. Ground states classify naturally into three types. We provide examples for each class, including a new ground state (the Double Cusp) that we analyze in detail. Finally, consider a long time and cosmologically normalized flow ([(g)\tilde],[(K)\tilde])(s)=((\frac-k3)2g,(\frac-k3)K){(\tilde{g},\tilde{K})(\sigma)=\left(\left(\frac{-k}{3}\right)^{2}g,\left(\frac{-k}{3}\right)K\right)}, where s = -ln(-k) ? [a,¥){\sigma=-\ln (-k)\in [a,\infty)}. We prove that if [(E1)\tilde]=E1(([(g)\tilde],[(K)\tilde])) £ L{\tilde{\mathcal{E}_{1}}=\mathcal{E}_{1}((\tilde{g},\tilde{K}))\leq \Lambda} (where E1=Q0+Q1{\mathcal{E}_{1}=Q_{0}+Q_{1}}, is the sum of the zero and first order Bel–Robinson energies) the flow ([(g)\tilde],[(K)\tilde])(s){(\tilde{g},\tilde{K})(\sigma)} persistently geometrizes the three-manifold Σ and the geometrization is the ground state if Vˉ Vinf{\mathcal{V}\downarrow \mathcal{V}_{\rm inf}}.  相似文献   

8.
Let \mathbbF\mathbb{F} be a p-adic field, let χ be a character of \mathbbF*\mathbb{F}^{*}, let ψ be a character of \mathbbF\mathbb{F} and let gy-1\gamma_{\psi}^{-1} be the normalized Weil factor associated with a character of second degree. We prove here that one can define a meromorphic function [(g)\tilde](c,s,y)\widetilde{\gamma}(\chi ,s,\psi) via a similar functional equation to the one used for the definition of the Tate γ-factor replacing the role of the Fourier transform with an integration against y·gy-1\psi\cdot\gamma_{\psi}^{-1}. It turns out that γ and [(g)\tilde]\widetilde{\gamma} have similar integral representations. Furthermore, [(g)\tilde]\widetilde{\gamma} has a relation to Shahidi‘s metaplectic local coefficient which is similar to the relation γ has with (the non-metalpectic) Shahidi‘s local coefficient. Up to an exponential factor, [(g)\tilde](c,s,y)\widetilde{\gamma}(\chi,s,\psi) is equal to the ratio \fracg(c2,2s,y)g(c,s+\frac12,y)\frac{\gamma(\chi^{2},2s,\psi)}{\gamma(\chi,s+\frac{1}{2},\psi)}.  相似文献   

9.
Let 1 ≤ mn. We prove various results about the chessboard complex M m,n , which is the simplicial complex of matchings in the complete bipartite graph K m,n . First, we demonstrate that there is nonvanishing 3-torsion in [(H)\tilde]d(\sf Mm,n; \mathbb Z){{\tilde{H}_d({\sf M}_{m,n}; {\mathbb Z})}} whenever \fracm+n-43 £ dm-4{{\frac{m+n-4}{3}\leq d \leq m-4}} and whenever 6 ≤ m < n and d = m − 3. Combining this result with theorems due to Friedman and Hanlon and to Shareshian and Wachs, we characterize all triples (m, n, d ) satisfying [(H)\tilde]d (\sf Mm,n; \mathbb Z) 1 0{{\tilde{H}_d \left({\sf M}_{m,n}; {\mathbb Z}\right) \neq 0}}. Second, for each k ≥ 0, we show that there is a polynomial f k (a, b) of degree 3k such that the dimension of [(H)\tilde]k+a+2b-2 (\sf Mk+a+3b-1,k+2a+3b-1; \mathbb Z3){{\tilde{H}_{k+a+2b-2}}\,\left({{\sf M}_{k+a+3b-1,k+2a+3b-1}}; \mathbb Z_{3}\right)}, viewed as a vector space over \mathbbZ3{\mathbb{Z}_3}, is at most f k (a, b) for all a ≥ 0 and bk + 2. Third, we give a computer-free proof that [(H)\tilde]2 (\sf M5,5; \mathbb Z) @ \mathbb Z3{{\tilde{H}_2 ({\sf M}_{5,5}; \mathbb {Z})\cong \mathbb Z_{3}}}. Several proofs are based on a new long exact sequence relating the homology of a certain subcomplex of M m,n to the homology of M m-2,n-1 and M m-2,n-3.  相似文献   

10.
Let V be a finite dimensional p-adic vector space and let τ be an operator in GL(V). A probability measure μ on V is called τ-decomposable or m ? [(L)\tilde]0(t)\mu\in {\tilde L}_0(\tau) if μ = τ(μ)* ρ for some probability measure ρ on V. Moreover, when τ is contracting, if ρ is infinitely divisible, so is μ, and if ρ is embeddable, so is μ. These two subclasses of [(L)\tilde]0(t){\tilde L}_0(\tau) are denoted by L 0(τ) and L 0 #(τ) respectively. When μ is infinitely divisible τ-decomposable for a contracting τ and has no idempotent factors, then it is τ-semi-selfdecomposable or operator semi-selfdecomposable. In this paper, sequences of decreasing subclasses of the above mentioned three classes, [(L)\tilde]m(t) é Lm(t) é L#m(t), 1 £ m £ ¥{\tilde L}_m(\tau)\supset L_m(\tau) \supset L^\#_m(\tau), 1\le m\le \infty , are introduced and several properties and characterizations are studied. The results obtained here are p-adic vector space versions of those given for probability measures on Euclidean spaces.  相似文献   

11.
Let W ì \mathbb Cd{\Omega \subset{\mathbb C}^{d}} be an irreducible bounded symmetric domain of type (r, a, b) in its Harish–Chandra realization. We study Toeplitz operators Tng{T^{\nu}_{g}} with symbol g acting on the standard weighted Bergman space Hn2{H_\nu^2} over Ω with weight ν. Under some conditions on the weights ν and ν 0 we show that there exists C(ν, ν 0) > 0, such that the Berezin transform [(g)\tilde]n0{\tilde{g}_{\nu_{0}}} of g with respect to H2n0{H^2_{\nu_0}} satisfies:
\labele0||[(g)\tilde]n0||C(n,n0)||Tng||,\label{e0}\|\tilde{g}_{\nu_0}\|_\infty \leq C(\nu,\nu_0)\|T^\nu_g\|,  相似文献   

12.
For β > 0 and an integer r ≥ 2, denote by [(H)\tilde]¥,br\tilde H_{\infty ,\beta }^r those 2π-periodic, real-valued functions f on ℝ, which are analytic in S β := {z: |Im z| < β} and satisfy the restriction |f (r)(z)|≤1, zS β . The optimal quadrature formulae about information composed of the values of a function and its kth (k = 1, ..., r − 1) derivatives on free knots for the classes [(H)\tilde]¥,br\tilde H_{\infty ,\beta }^r are obtained, and the error estimates of the optimal quadrature formulae are exactly determined.  相似文献   

13.
This self-contained short note deals with the study of the properties of some real projective compact quadrics associated with a a standard pseudo-hermitian space H p,q , namely [(Q(p, q))\tilde], [(Q2p+1,1)\tilde], [(Q1,2q+1)\tilde], [(Hp,q)\tilde].  [(Q(p, q))\tilde]{\widetilde{Q(p, q)}, \widetilde{Q_{2p+1,1}}, \widetilde{Q_{1,2q+1}}, \widetilde{H_{p,q}}. \, \widetilde{Q(p, q)}} is the (2n – 2) real projective quadric diffeomorphic to (S 2p–1 × S 2q–1)/Z 2. inside the real projective space P(E 1), where E 1 is the real 2n-dimensional space subordinate to H p,q . The properties of [(Q(p, q))\tilde]{\widetilde{Q(p, q)}} are investigated. [(Hp,q)\tilde]{\widetilde{H_p,q}} is the real (2n – 3)-dimensional compact manifold-(projective quadric)- associated with H p,q , inside the complex projective space P(H p,q ), diffeomorphic to (S 2p–1 × S 2q–1)/S 1. The properties of [(Hp,q)\tilde]{\widetilde{H_{p,q}}} are studied. [(Q2p+1,1)\tilde]{\widetilde{Q_{2p+1,1}}} is a 2p-dimensional standard real projective quadric, and [(Q1,2q+1)\tilde]{\widetilde{Q_{1,2q+1}}} is another standard 2q-dimensional projective quadric. [(Q2p+1,1)\tilde] è[(Q1,2q+1)\tilde]{\widetilde{Q_{2p+1,1}} \cup \widetilde{Q_{1,2q+1}}}, union of two compact quadrics plays a part in the understanding of the "special pseudo-unitary conformal compactification" of H p,q . It is shown how a distribution yD y , where y ? H\{0},H{y \in H\backslash\{0\},H} being the isotropic cone of H p,q allows to [(Hp+1,q+1)\tilde]{\widetilde{H_{p+1,q+1}}} to be considered as a "special pseudo-unitary conformal compactified" of H p,q × R. The following results precise the presentation given in [1,c].  相似文献   

14.
This paper is a contribution to the study of a quasi-order on the set Ω of Boolean functions, the simple minor quasi-order. We look at the join-irreducible members of the resulting poset [(W)\tilde]\tilde{\Omega}. Using a two-way correspondence between Boolean functions and hypergraphs, join-irreducibility translates into a combinatorial property of hypergraphs. We observe that among Steiner systems, those which yield join-irreducible members of [(W)\tilde]\tilde{\Omega} are the − 2-monomorphic Steiner systems. We also describe the graphs which correspond to join-irreducible members of [(W)\tilde]\tilde{\Omega}.  相似文献   

15.
To every nilpotent commutative algebra N{\mathcal{N}} of finite dimension over an arbitrary base field of characteristic zero a smooth algebraic subvariety S ì N{S\subset\mathcal{N}} can be associated in a canonical way whose degree is the nil-index and whose codimension is the dimension of the annihilator A{\mathcal{A}} of N{\mathcal{N}}. In case N{\mathcal{N}} admits a grading, the surface S is affinely homogeneous. More can be said if A{\mathcal{A}} has dimension 1, that is, if N{\mathcal{N}} is the maximal ideal of a Gorenstein algebra. In this case two such algebras N{\mathcal{N}}, [(N)\tilde]{\tilde{\mathcal{N}}} are isomorphic if and only if the associated hypersurfaces S, [(S)\tilde]{\tilde S} are affinely equivalent. If one of S, [(S)\tilde]{\tilde S} even is affinely homogeneous, ‘affinely equivalent’ can be replaced by ‘linearly equivalent’. In case the nil-index of N{\mathcal{N}} does not exceed 4 the hypersurface S is always affinely homogeneous. Contrary to the expectation, in case nil-index 5 there exists an example (in dimension 23) where S is not affinely homogeneous.  相似文献   

16.
The bigraded Frobenius characteristic of the Garsia-Haiman module M μ is known [7, 10] to be given by the modified Macdonald polynomial [(H)\tilde]m[X; q, t]{\tilde{H}_{\mu}[X; q, t]}. It follows from this that, for m\vdash n{\mu \vdash n} the symmetric polynomial ?p1 [(H)\tilde]m[X; q, t]{{\partial_{p1}} \tilde{H}_{\mu}[X; q, t]} is the bigraded Frobenius characteristic of the restriction of M μ from S n to S n-1. The theory of Macdonald polynomials gives explicit formulas for the coefficients c μ v occurring in the expansion ?p1 [(H)\tilde]m[X; q, t] = ?v ? mcmv [(H)\tilde]v[X; q, t]{{\partial_{p1}} \tilde{H}_{\mu}[X; q, t] = \sum_{v \to \mu}c_{\mu v} \tilde{H}_{v}[X; q, t]}. In particular, it follows from this formula that the bigraded Hilbert series F μ (q, t) of M μ may be calculated from the recursion Fm (q, t) = ?v ? mcmv Fv (q, t){F_\mu (q, t) = \sum_{v \to \mu}c_{\mu v} F_v (q, t)}. One of the frustrating problems of the theory of Macdonald polynomials has been to derive from this recursion that Fm(q, t) ? N[q, t]{F\mu (q, t) \in \mathbf{N}[q, t]}. This difficulty arises from the fact that the c μ v have rather intricate expressions as rational functions in q, t. We give here a new recursion, from which a new combinatorial formula for F μ (q, t) can be derived when μ is a two-column partition. The proof suggests a method for deriving an analogous formula in the general case. The method was successfully carried out for the hook case by Yoo in [15].  相似文献   

17.
Given two maps h : X ×K ? \mathbbR{h : X \times K \rightarrow \mathbb{R}} and g : XK such that, for all x ? X, h(x, g(x)) = 0{x \in X, h(x, g(x)) = 0} , we consider the equilibrium problem of finding [(x)\tilde] ? X{\tilde{x} \in X} such that h([(x)\tilde], g(x)) 3 0{h(\tilde{x}, g(x)) \geq 0} for every x ? X{x \in X} . This question is related to a coincidence problem.  相似文献   

18.
Let Q be a finite quiver of type A n , n ≥ 1, D n , n ≥ 4, E 6, E 7 and E 8, σ ∈ Aut(Q), k be an algebraic closed field whose characteristic does not divide the order of σ. In this article, we prove that the dual quiver [(GQ)\tilde]\widetilde{\Gamma_{Q}} of the Auslander–Reiten quiver Γ Q of kQ, the Auslander–Reiten quiver of kQ#kás?kQ\#k\langle\sigma\rangle, and the Auslander–Reiten quiver G[(Q)\tilde]\Gamma_{\widetilde{Q}} of k[(Q)\tilde]k\widetilde{Q}, where [(Q)\tilde]\widetilde{Q} is the dual quiver of Q, are isomorphic.  相似文献   

19.
20.
Let M n be a Riemannian n-manifold. Denote by S(p) and [`(Ric)](p)\overline {Ric}(p) the Ricci tensor and the maximum Ricci curvature on M n at a point p ? Mnp\in M^n, respectively. First we show that every isotropic submanifold of a complex space form [(M)\tilde]m(4 c)\widetilde M^m(4\,c) satisfies S £ ((n-1)c+ [(n2)/4] H2)gS\leq ((n-1)c+ {n^2 \over 4} H^2)g, where H2 and g are the squared mean curvature function and the metric tensor on M n, respectively. The equality case of the above inequality holds identically if and only if either M n is totally geodesic submanifold or n = 2 and M n is a totally umbilical submanifold. Then we prove that if a Lagrangian submanifold of a complex space form [(M)\tilde]m(4 c)\widetilde M^m(4\,c) satisfies [`(Ric)] = (n-1)c+ [(n2)/4] H2\overline {Ric}= (n-1)c+ {n^2 \over 4} H^2 identically, then it is a minimal submanifold. Finally, we describe the geometry of Lagrangian submanifolds which satisfy the equality under the condition that the dimension of the kernel of second fundamental form is constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号