首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stability of C60 and C70 fullerenes and C60 and C72 nanotubes devoid of 2–12 atoms of the cluster skeleton was theoretically studied. It was established that Cn molecules with an even number of atoms remain stable, which was confirmed by experimental studies of monomolecular decay of clusters with the number of atoms n≥30. The change in the internuclear distances and in the ionization potential of nanoclusters was determined depending on the number of eliminated atoms. Such defects were shown to decrease the ionization potential of nanoclusters by 0.5–0.8 eV. The electron spectrum was calculated within the Harrison semiempirical tight-binding model in the Goodwin modification. A new parametrization of interatomic matrix elements of the Hamiltonian and atomic terms for carbon nanoclusters was suggested.  相似文献   

2.
Polyimide-fullerene composite thin coatings are investigated using thermal desorption mass spectrometry in the temperature range 20–800°C. It is found that, at temperatures below the temperature of decom-position of the polymer matrix, thermally stimulated desorption of fullerene molecules is limited by the diffusion of fullerene molecules in the matrix. The diffusion coefficients and activation energies of diffusion of C60 and C70 fullerene molecules are determined from the experimental data on thermally stimulated desorption in the framework of several approaches. It is revealed that the diffusion of C70 molecules in the polyimide matrix is more hindered than the diffusion of C60 molecules in the same matrix.  相似文献   

3.
The vibrational spectra of 2-cyclooctylamino-5-nitropyridine (COANP) solutions and the evolution of the spectra upon changing over from the solutions to solid-phase COANP are investigated. The bands observed in the spectra are assigned to the corresponding vibrational modes. The nature of the interaction of COANP with C60 and C70 fullerenes is elucidated by analyzing the transmission spectra of these compounds. No interaction of the COANP compound with C60 and C70 fullerenes is revealed under the studied conditions. It is assumed that the physical nature of this phenomenon can be associated with the formation of liquid-crystal clusters consisting of fullerene molecules.  相似文献   

4.
The C60 and C70 fullerene-cluster size distribution in aqueous solutions and a physiological medium is studied via dynamic light scattering. The initial aqueous solutions of fullerenes obtained via different methods are found to contain clusters with a characteristic size of about 100 nm. The additional aggregation of fullerenes is observed after their transfer into a physiological medium (0.9% NaCl) and is established to depend on the preparation method. The cluster-size distribution in a fullerene–pectic-acid mixture is found to vary in water and a physiological medium. The results reveal the need for additional studies of the structure and properties of C60 and C70 molecules, as well as their complexes with medicines, in a physiological medium for medical applications.  相似文献   

5.
The photoionization of the C60 and C240 fullerenes by ultrashort electromagnetic pulses of subfemtosecond duration is studied. The probability for the process to occur during the action of the pulse as a function of the pulse duration is calculated for different carrier frequencies. The spectrum of photoelectrons emitted during the ionization of the fullerenes by a pulse with a corrected Gaussian shape is calculated.  相似文献   

6.
7.
8.
A series of new heterofullerides with compositions Rb2MC60, K2MC60, and KM2C60 (M = Mg, Be) have been synthesized. Measurements of the temperature dependences of the magnetic susceptibility in the temperature interval from 4.2 to 300 K reveal a superconducting transition in heterofullerides K2MgC60, KMg2C60, K2BeC60, and Rb2BeC60 at temperatures T c = 13–22 K. The electron states with uncompensated spin are studied by the electron paramagnetic resonance technique. The contributions of conduction electrons and localized electrons to the paramagnetic susceptibility are extracted.  相似文献   

9.
Ko WB  Baek KN 《Ultrasonics》2002,39(10):729-733
The reaction of C70 by ultrasonication with various oxidants such as 3-chloroperoxy benzoic acid (Fluka 99%), 4-methyl morpholine N-oxide (Aldrich 97%), chromium (VI) oxide (Aldrich 99.9%), and oxone® monopersulfate compound, at room temperature causes the oxidation of fullerene [C70(O)n] (n=1–2 or n=1). The FAB-MS, UV–visible, FT-IR spectra, and HPLC analysis confirmed that products of fullerene oxidation are [C70(O)n] (n=1–2 or n=1).  相似文献   

10.
The structure transformation occurring in fullerene film under bombardment by 50 keV C60+ cluster ions is reported. The Raman spectra of the irradiated C60 films reveal a new peak rising at 1458 cm−1 with an increase in the ion fluence. This feature of the Raman spectra suggests linear polymerization of solid C60 induced by the cluster ion impacts. The aligned C60 polymeric chains composing about 5–10 fullerene molecules have been distinguished on the film surface after the high-fluence irradiation using atomic force microscopy (AFM). The surface profiling analysis of the irradiated films has revealed pronounced sputtering during the treatment. The obtained results indicate that the C60 polymerization occurs in a deep layer situated more than 40 nm below the film surface. The deep location of the C60 polymeric phase indirectly confirms the dominant role of shock waves in the detected C60 phase transformation.  相似文献   

11.
The effect of heating of the electronic subsystem on the thermal stability of C60 and C20 fullerenes and a (C20)2 cluster molecule is investigated theoretically. It is demonstrated that the excitation of electrons to upper energy levels in accordance with the Fermi-Dirac distribution function does not lead to a substantial change in the activation energy E a for decay of the C20 fullerene. The stability of the C60 fullerene and the (C20)2 cluster molecule likewise does not change radically. However, the inclusion of corrections associated with the finite sizes of the heat bath leads to the activation energy E a which is in better agreement with the calculated height of the potential barrier preventing the cluster decay.  相似文献   

12.
Reactions of fullerene C60 with atomic fluorine are studied by the unrestricted broken spin symmetry Hartree-Fock (UBS HF) approach implemented in semiempirical codes based on the AMI technique. The calculations are focused on a successive addition of a fluorine atom to the fullerene cage following the indication of the highest chemical susceptibility of the cage atom, which is calculated at each step. The proposed computational synthesis is based on the effectively unpaired-electron concept of the chemical susceptibility of fullerene atoms. The obtained results are analyzed from the standpoints of energy, symmetry, and the composition abundance. A good fitting of the data to experimental findings proves a creative role of the suggested synthetic methodology.  相似文献   

13.
Carbon-based nanoparticles (NPs) such as fullerenes and nanotubes have been extensively studied for drug delivery in recent years. The permeation process of fullerene and its derivative molecules through membrane is essential to the utilization of fullerene-based drug delivery system, but the mechanism and the dynamics of permeation through cell membrane are still unclear. In this study, coarse-grained molecular dynamics simulations were performed to investigate the permeation process of functionalized fullerene molecules (ca. 0.72 nm) through the membrane. Our results show that single functionalized fullerene molecule in such nanoscale could permeate the lipid membrane in micro-second time scale. Pristine C60 molecules prefer to aggregate into several small clusters while C60OH15 molecules could aggregate into one big cluster to permeate through the lipid membrane. After permeation of C60 or its derivatives into membrane, all C60 and C60OH15 molecules disaggregated and monodispersed in the lipid membrane.
Graphical abstract ?
  相似文献   

14.
The quenching of the electronically excited states of various energy donors—Tb3+; 9,10-anthracene dibromide; and adamantanone—by C70 fullerene has been detected and analyzed. The quenching is characterized by anomalously high biomolecular quenching rate constants, which are obtained from the Stern-Volmer dependences of the energy-donor photoluminescence intensity on the concentration of the C70 molecules. It has been shown that the high efficiency of quenching by the C70 fullerene as compared to the C60 fullerene is due to the higher polarizability of the C70 molecule and large overlap integrals of the energy-donor photoluminescence spectra with the absorption spectrum of the C70 fullerene.  相似文献   

15.
The optical Raman and photoluminescence (PL) spectra of the high-pressure hydrogenated fullerene C60 are studied at normal conditions and at high pressure. The Raman spectrum of the most stable hydrofullerene C60H36 contains a large number of peaks related to various isomers of this molecule. Comparison of the experimental data with the results of calculations shows that the most abundant isomers have the symmetries S6, T, and D3d. The Raman spectrum of deuterofullerene C60H36 is similar to that of C60H36, but the frequencies of the C-H stretching and bending modes are shifted due to the isotopic effect. The PL spectrum of hydrofullerene C60H36 is shifted to higher energies by approximately 1 eV with respect to that of pristine C60. The effect of hydrostatic pressure on the Raman and PL spectra of C60H36 has been investigated up to 12 GPa. The pressure dependence of the phonon frequencies exhibits peculiarities at approximately 0.6 and 6 GPa. The changes observed at approximately 0.6 GPa are probably related to a phase transition from the initial orientationally disordered body-centered cubic structure to an orientationally ordered structure. The peculiarity at approximately 6 GPa may be related to a pressure-driven enhancement of the C-H interaction between the hydrogen and carbon atoms belonging to neighboring molecular cages. The pressure-induced shift of the photoluminescence spectrum of C60H36 is very small up to 6 GPa, and a negative pressure shift was observed at higher pressure. All the observed pressure effects are reversible with pressure.  相似文献   

16.
It is found that, under certain conditions, C60 fullerite crystals can be cleaved along cleavage planes that are close-packed planes of the {111} type. Rigid gas-phase grown crystals exhibit good cleavage properties. In experiments with active compressive deformation, these crystals showed a high yield point τy = 2.65 MPa, a “parabolic” stress-strain curve, and brittle fracture after attaining a shear strain of about 8%. The fracture surface was clearly seen to have fragments parallel to the (111) plane. Typical microstructures observed in the cleavage plane are discussed: crystallographic cleavage steps, an indentation pattern, and a dislocation prick rosette. The fact that the activation volume V ? 60b3 is small (b is the Burgers vector of a dislocation) and strain-independent indicates the Peierls character of fullerite deformation or dislocation drag in a dense network of local defects.  相似文献   

17.
Phase transitions in two types of amorphous fullerene phases (C60–C70 (50/50) mixtures and an amorpous C70 fullerene phase) are studied via neutron diffraction at pressures of 2–8 GPa and temperatures of 200–1100°C. Fullerenes are amorphized by grinding in a ball mill and sintered under quasi-hydrostatic pressure in a toroidal-type chamber. Diffraction studies are performed ex situ. It is shown that the amorphous phase of fullerenes retains its structure at temperatures of 200–500°C, and amorphous graphite is formed at 800–1100°C with a subsequent transition to crystalline graphite. This process is slow in a mixture of fullerenes, compared to C70 fullerene. According to neutron diffraction data, the amorphous graphite formed from amorphous fullerene phases has anisotropy that is much weaker in a fullerene mixture.  相似文献   

18.
This paper discusses the results of calorimetric studies of the 1D C60 (orthorhombic) and 2D C60 (tetragonal and rhombohedral) fullerites, as well as of the graphite-like polyfullerite, which are produced from a starting C60 fullerite subjected to a pressure of 1–8 GPa at temperatures ranging from 300 to 1270 K. The analysis is made primarily of the C p 0 heat capacity measurements performed in adiabatic calorimeters in the 5-to 350-K range.  相似文献   

19.
A (O2) x C60 sample with a high content of oxygen (x ≥ 0.4) and free of technological solvent impurities was obtained by precipitation from solution. For the first time, the results of the determination of the x coefficients using 13C NMR and elemental analysis were compared. It was shown by Raman spectroscopy, mass spectrometry, and NMR that the inclusion of oxygen into fullerite was accompanied by a decrease in the frequency of O=O stretching vibrations by no less than 12 cm−1 compared with gaseous O2. Nevertheless, oxygen exists in the molecular form in (O2)0.4C60 and is released in the form of O2 as the sample is heated to 373 K. The number of oxygen molecules occupying octahedral pores closets to the fullerene molecule takes on all the possible values, from 0 to 6. At room temperature, the (O2) x C60 sample lost oxygen much more slowly than similar products prepared by diffusion saturation of pure fullerite with oxygen.  相似文献   

20.
The reaction of C70 by ultrasonication with various oxidants such as 3-chloroperoxy benzoic acid (Fluka 99%), 4-methyl morpholine N-oxide (Aldrich 97%), chromium (VI) oxide (Aldrich 99.9%), and oxone® monopersulfate compound, at room temperature causes the oxidation of fullerene [C70(O)n] (n=1–2 or n=1). The FAB-MS, UV–visible, FT-IR spectra, and HPLC analysis confirmed that products of fullerene oxidation are [C70(O)n] (n=1–2 or n=1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号