首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
童晖  蓝宇  顾郑强 《应用声学》2010,29(2):87-92
纵振式换能器是水声领域中不可或缺的一类中频段换能器,本文以超磁致伸缩材料Terfenol-D和压电陶瓷材料PZT作为驱动元件设计混合激励纵振式换能器。利用ANSYS有限元软件建立了有限元模型,对换能器的电声参数进行了优化,并制作一宽带混合激励纵振式换能器,实验测得的换能器与仿真的结果较为吻合,实测换能器的最大发送电压响应为145dB,其工作频带为4kHz-16kHz,频带内发送电压响应起伏为±4.5dB。  相似文献   

2.
单侧外部驱动弯张换能器   总被引:1,自引:0,他引:1       下载免费PDF全文
本文设计、制作了一种单侧外部驱动的弯张换能器,并利用有限元分析软件ANSYS构建了有限元模型,对换能器的电声参数进行了预测,计算结果与实验结果吻合较好。实验测得换能器的最大发射电压响应级为142dB,如果将发射电压加到1200V,换能器的最大声源级预计可达203dB。  相似文献   

3.
吕可佳  李俊宝  李源 《声学学报》2020,45(1):110-116
提出一种具有小尺寸、低频、水平无指向性的新结构换能器——折回型纵向振子拼合圆柱换能器,换能器由4组共享尾质量块的折回型压电纵向振子正交布置驱动环形辐射面拼合构成。采用有限元方法对换能器进行优化设计,并制作了换能器样品。实验结果表明:换能器直径为Φ180 mm,谐振频率为1.5 kHz,最大发射电压响应为131 dB,最大声源级不低于188 dB,水平全向。该换能器具有低频、小尺寸、水平无指向性的特点,具有良好的应用前景。  相似文献   

4.
秦雷  王丽坤  王钢  孙百生 《应用声学》2009,28(6):472-475
应用复合变幅杆及夹心式换能器结构,研制了一种指向性开角较大且发射电压响应较高的发射换能器。应用有限元方法对换能器的工作频率,发射电压响应及指向性进行了理论计算。并与实验结果进行了比较,结果较吻合。本文研制的换能器工作频率为75.6kHz,发射电压响应级达到1 56dB(基准值1V/μPa),-3dB发射指向性开角100°  相似文献   

5.
提出了一种利用多模耦合实现低频、宽带、大功率特性的新结构Ⅲ型弯张换能器。通过在压电陶瓷堆内部嵌入与凹型弯张壳体相连的弹性辅助弯曲梁结构,并用弯曲圆盘作为顶部自由端盖,增加有效工作模态。利用有限元方法对换能器进行了设计优化,分析结果显示换能器在低频段存在4个主要工作模态。根据优化结果,加工制作了换能器样机,水池实验的测试结果表明:在1.5~5.5 kHz范围内,换能器样机的发送电压响应均大于135 dB;1.5~4 kHz内的最大发送电压响应大于142 dB,响应起伏小于6 dB。研究结果表明自由端盖Ⅲ型弯张换能器不仅能够在小尺寸设计下实现大功率工作,还能获得低频宽带发射性能。  相似文献   

6.
高性能环境友好型无铅压电陶瓷及其应用是当前压电材料研究的热点之一,为了探究其在水声换能器领域的应用潜力,该文对铌酸钾钠基无铅压电陶瓷和锆钛酸铅压电陶瓷纵振式换能器进行了对比研究。依据仿真结果优化结构尺寸,制作了两种换能器样机并测试了其在空气中和水中的电声性能。测试结果表明,铌酸钾钠基无铅压电陶瓷换能器的谐振频率为35kHz,最大发送电压响应为 151dB,声源级可达 190dB,在 26kHz~67kHz 的频率范围内发送电压响应的起伏不超过±4.5dB,谐振频率处-3dB 的指向性开角约为 76°。该无铅压电陶瓷换能器具有和锆钛酸铅压电陶瓷换能器相当的发射性能,有望推动无铅压电材料在水声换能器领域的应用进程。  相似文献   

7.
为了降低纵向换能器尺寸并提高发射带宽和发送电压响应,研究了一种弛豫铁电单晶/压电陶瓷混合激励换能器,换能器由[011]方向极化PIN-PMN-PT单晶和PZT-4压电陶瓷混合激励,利用多模态振动耦合的原理,通过单晶的32模式振动,可以灵活调整两种振子之间的驱动能力和刚度分配。首先通过四端网络法得到了换能器等效电路并计算了其谐振频率,然后利用有限元方法对换能器进行了仿真优化,最后制作了试验样机并进行了测试分析。换能器样机外径86 mm、长度80 mm,工作频带13~38 kHz,最大发送电压响应为144.9 dB,带内发送电压响应起伏小于6 dB,具有良好的宽带、小尺寸工作性能。  相似文献   

8.
李宽  蓝宇  周天放 《声学学报》2016,41(6):843-850
四边型弯张换能器通常工作带宽较窄,为了提高带宽性能,对四边型弯张换能器振动及辐射特性进行了研究,重点分析壳体结构参数对换能器发送电压响应的影响。根据分析结果提出了拓宽换能器工作带宽的方法,利用有限元软件进行了仿真计算并制作了四边型弯张换能器样机。测量得到在2.4~5 kHz的频率范围内,换能器的最大发送电压响应值达到140 dB,带内起伏4 dB,有限元仿真结果与实验结果吻合较好。研究结果表明设计的四边型弯张换能器不仅能够低频工作,并且可以在小尺寸下实现大功率发射,同时还具备宽带发射特性。  相似文献   

9.
磁致伸缩-压电联合激励凹筒型发射换能器   总被引:5,自引:2,他引:3  
柴勇  莫喜平  刘永平  崔政 《声学学报》2006,31(6):523-526
设计制作了一种新型磁致伸缩-压电联合激励凹筒型发射换能器,采用稀土超磁致伸缩材料Terfenol-D与PZT压电陶瓷作为联合激励元件,模拟计算与实测结果均表明,与采用单一振子激励的凹筒型发射换能器相比,此种新型换能器在保持尺寸小、频率低等优点的同时,显著拓宽了工作频带并提高了辐射声功率.换能器外型尺寸为φ88 mm×316 mm,水中谐振频率1.30 kHz,-3 dB带通Q值1.43,谐振频率下发射电压响应级135.1 dB.  相似文献   

10.
提出一种具有水平无指向性、低频、宽带、大功率特点的新结构换能器——“星型”柱面发射换能器,换能器由共享后质量块的6个复合棒换能器按“星型”方式组成柱面结构。采用有限元方法对换能器进行了分析设计并制作了换能器样机。在1—10 kHz内,换能器有3个主要工作模态,前两阶工作模态对换能器工作带宽的展宽有贡献,第三阶模态显示出较强的指向性,水池测试换能器具有1倍频程的工作带宽,最大声源级为199.1 dB。有限元模拟结果和实验结果符合较好。研究结果表明,新结构换能器在满足水平无指向性的前提下,利用复合棒的纵振及辐射面的弯曲振动实现了低频、宽带、大功率的要求,提供了一种设计该特性换能器的新思路。  相似文献   

11.
多谐振宽带Janus-Ring换能器   总被引:1,自引:0,他引:1       下载免费PDF全文
孙淑珍  李俊宝 《声学学报》2019,44(4):743-750
提出了一种多谐振宽带Janus-Ring换能器,两个一定距离的压电圆环换能器(Ring换能器)嵌套在双面纵振Janus换能器的两端,Ring换能器的径向振动、Janus换能器的纵振动与它们中间形成的Helmholtz液腔振动相耦合,可大大拓展换能器的工作带宽。使用有限元方法设计并研制了Janus-Ring换能器样机,经测试在1.8~8.0 kHz范围内,样机最大发射电压响应144 dB,起伏小于6 dB。相比传统的Janus-Helmholtz换能器,Janus-Ring换能器有效拓展了工作频带,增大了发射电压响应,减小了频带内的发射电压响应起伏。  相似文献   

12.
针对深水、低频、宽带换能器的技术需求,结合Janus-Helmholtz换能器的结构特点和铁镓单晶材料低场应变大及机械强度高的特性,提出了铁镓单晶Janus-Helmholtz换能器设计方案。采用永磁偏磁场和环形闭合磁路,建立了一系列铁镓单晶磁致伸缩换能器理论分析模型,包括对磁致伸缩材料参数进行线性化处理,设计了换能器最佳工作点,结合静态磁场和动态磁场分布情况分段细化换能器驱动等效参数,以及利用全阻抗模型通过电感损耗等效计算换能器静态阻抗,然后通过二维有限元分析等效模型,优化分析了换能器的结构参数与电声性能。最后制作了换能器样机,并进行了测试与分析。对比仿真和测试结果表明:全阻抗模型得到的阻抗曲线与样机测试结果相一致,有限元等效模型计算的发送电流响应与样机测试结果良好吻合。换能器样机水中谐振基频为1000Hz,谐振频率下发送电流响应176.4dB;在875~2300Hz频率范围内,发送电流响应起伏不大于6dB;增加驱动电流有效值到16.2A,最大声源级可以达到196.2dB。  相似文献   

13.
贺西平  李斌  孙进才 《声学学报》2001,26(4):377-380
对研制出的换能器弯张亮体及换能器的振动模态进行了测试,与理论计算相符;对换能器的声学性能作了测试:水中诸报频率为1.16kHz,带宽为680Hz,机械品质因数Qm为1.71,单位电流发射响应在谐振频率处达到186.1dB,电声效率为13.1%.  相似文献   

14.
针对Janus-Helmholtz (JH)换能器频带内响应起伏较大、模态耦合机制尚不明确的问题,提出了振动模态声辐射独立建模方法。该方法建立换能器各个振动模的独立有限元模型,在仿真计算中将位移载荷直接加载在辐射面上,分析振动模的辐射声场。通过各个结果的对比分析,观察到JH换能器声辐射模态的弱耦合规律,最终给出JH换能器带宽特性的合理物理解释,即JH换能器在同一纵向振子激励下,由于不存在声输出明显干涉加强的模态耦合,因此难以得到通常意义上响应起伏小于3 dB的宽带工作性能。以控制工作频带内响应起伏较小为前提,将拓宽工作频带作为设计目标,优化设计了 JH换能器结构参数。实验中换能器样机的发射电压响应测试结果与仿真计算相吻合,实测谐振频率为1350 Hz与2450 Hz,谐振频率下发射电压响应分别为143 dB,141 dB,在频带1200~3300 Hz范围内响应起伏12 dB,最大声源级204 dB,实现了宽带大功率发射的特性。  相似文献   

15.
蓝宇  王厚琦  卢苇 《声学学报》2024,(2):327-335
为实现低频、小尺寸水下声源,利用具有大应变、快速响应和高能量密度等优势的NiMnGa合金为驱动元件设计了水声换能器。基于NiMnGa合金变形原理,建立了NiMnGa纵振式换能器物理模型,推导了等效电路。通过有限元法,实现了NiMnGa纵振式换能器电磁-机械-声的多物理场耦合仿真,用于预测换能器的水下声学性能。制作了小型NiMnGa纵振式换能器样机,并在水中测试了500~800 Hz频带内的声源级。实验结果表明,换能器样机辐射面直径为8 mm,水中谐振频率为700 Hz,最大声源级为115.5 dB。  相似文献   

16.
柴勇  莫喜平  刘永平  崔政 《应用声学》2005,24(3):164-166
本文设计并制作了一种Terfenol—D球形换能器,使用有限元分析软件ANSYS对换能器的电声参数进行模拟计算,计算结果与实验结果符合很好。换能器水中谐振频率f=6.3kHz,Q-3dB=2.63,证明具有低频、宽带的特点。  相似文献   

17.
柴勇  莫喜平  刘永平  崔政 《声学学报》2006,31(6):523-526
设计制作了一种新型磁致伸缩-压电联合激励凹简型发射换能器,采用稀土超磁致伸缩材料Terfenol-D与PZT压电陶瓷作为联合激励元件,模拟计算与实测结果均表明,与采用单一振子激励的凹筒型发射换能器相比,此种新型换能器在保持尺寸小、频率低等优点的同时,显著拓宽了工作频带并提高了辐射声功率。换能器外型尺寸为φ88 mm×316 mm,水中谐振频率1.30 kHz,-3 dB带通Q值1.43,谐振频率下发射电压响应级135.1 dB。  相似文献   

18.
长轴加长型宽带弯张换能器   总被引:3,自引:1,他引:2  
陈思  蓝宇 《声学学报》2011,36(6):638-644
Ⅳ型弯张换能器的机械品质因数较高,带宽不宽。为改善其带宽性能,在椭圆管形弯张壳体的基础上,利用多模态耦合的原理,提出了一种长轴加长型弯张换能器。以新型弛豫铁电单晶铌镁酸铅——钛酸铅(PMNT)为驱动材料,利用有限元软件ANSYS对弯张换能器进行了设计分析并制作了换能器样机。测量得到在1.6~16 kHz的频率范围内,换能器的最大发送电压响应136dB,响应起伏7.8 dB。理论分析与实验结果表明,与Ⅳ型弯张换能器相比,长轴加长型弯张换能器在保持频率低,响应高等优点的同时,显著拓宽了弯张换能器的带宽。  相似文献   

19.
1-3型压电复合材料宽带水声换能器研究   总被引:7,自引:1,他引:6  
张凯  蓝宇  李琪 《声学学报》2011,36(6):631-637
1-3型压电复合材料换能器具有重量轻、声阻抗率低等优点,复合材料换能器带宽的拓展一般采用匹配层的方法。采用厚度振动模态理论、横向模态理论和有限元方法对1-3型压电复合材料换能器进行研究,应用ANSYS软件建立换能器的有限元模型,然后进行结构优化,最终制作了一个利用厚度振动模态和一阶横向模态的13型压电复合材料宽带换能器,其工作带宽为190~390 kHz,发送电压响应起伏不超过±2dB。研究结果表明:利用厚度振动模态和一阶横向模态可以拓展1-3型压电复合材料换能器的带宽,同时也给出了一种高频换能器实现宽带发射的方法。  相似文献   

20.
王宏伟  惠辉  荣畋 《声学学报》2022,47(3):364-371
设计并制作了一种高灵敏压电平面水声换能器。该换能器敏感元件是对1-3-2型压电复合材料结构的改进,即在带基底的压电陶瓷小柱阵列间不注入聚合物,并在其上表面直接覆盖金属板,构成“带基底的压电小柱阵列+金属盖板”结构敏感元件(称为“空气填充型”敏感元件)。对“空气填充型”敏感元件的谐振频率进行了理论计算和有限元仿真,与实测结果较吻合。为便于对比性能,同时制作了同尺寸“1-3-2型压电复合材料+金属盖板”结构敏感元件(称为“聚合物填充型”敏感元件)换能器。分别对“空气填充型”和“聚合物填充型”敏感元件换能器的有效机电耦合系数、发送电压响应和接收灵敏度进行有限元仿真和实测,结果均显示,“空气填充型”敏感元件换能器具有较高的接收灵敏度,相较于“聚合物填充型”敏感元件换能器可提高21 dB。该敏感元件换能器能有效提高灵敏度,可为研制高灵敏换能器提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号