首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
利用光吸收技术测量钠蒸汽密度。在3×101~(11)到1.2×10~(12)cm~(-3)的密度范围内,将激光调谐到钠D_2线紫(红)端约70GHz,记录激光频率的Rayleigh散射,直接(D_2线)荧光和敏化(D_1线)荧光的强度。获得D_2线共振自增宽率系数k_(br,2)=5.44×10~(-7)cm~3/S±15%。给出了不同密度下Na(3P_(3/2))+Na(3S)Na(3P_(1/2))+Na(3S)的碰撞转移率。得到了在T≈184℃时碰撞转移截面σ_(21)=1.99nm±29%。并与其他的实验结果和理论作了比较。  相似文献   

2.
利用光学双共振和激光光谱技术,测量了K_2(~1A_g)态的预解离率和碰撞转移率.脉冲激光将K_2(1~1∑_g~+)基态激发至1~1∑_u~+态,由连续激光激发1~1∑_u~+至激高位~1A_g态.在不同K密度下,记录~1A_g→~1A_u跃迁的时间分辨荧光,光强的对数与衰变时间成线性关系,从直线的斜率得到~1A_g态的有效寿命,由Stern-Volmer方程得到~1A_g态的辐射率与预解离率之和及总的碰撞去布居截面.在不同的K密度下测量时间积分荧光强度I_3[K_2(~1A_g)→K_2(~1A_u)],I_2[K(6S)→K(4P_(3/2))]和I_1[K(4D)→K(4P_(3/2))],光强比I_1/I_3和I_2/I_3与K密度也成线性关系.从直线的斜率和截距并结合从Stern-Volmer方程得到的结果,确定K_3(~1A_g)的预解离率Γ_(P6S)=(1.2±0.4)×10~7s~(-1),Γ_(P4D)=(0.8±0.3)×10~7s~(-1)和碰撞转移截面σss=(1.9±0.6)×10~(-14)cm~2,σ_(4D)=(9.0±3.0)×10~(-15)cm~2.  相似文献   

3.
利用激光(调离NaD_2线±20GHz)激发钠蒸汽,测量Na(3P)+Na(3P)→Na(4F)+Na(3S)的碰撞激发转移截面。因4F→3D的荧光位于红外(1.84μm),故检测3~2D_(3/2)→3~2P_(1/2)(818.3nm)和3~2D→3~2P_(3/2)(819.5nm)级联荧光信号。通过测量激光频率的Rayleigh散射光,直接D_2线荧光和敏化D_1线荧光分布,确定了钠原子密度,定出了有效辐射俘获衰变率Γ_(D_1)~e,Γ_(D_2)~e。结合激光功率吸收率的测量得到了Na(3P)的密度,从而给出转移截面σ(4F)=37A~2(±33%)。与其他作者的实验结果和理论值作了比较,进行了讨论。  相似文献   

4.
本实验通过饱和吸收方法获得了铷原子5S_(1/2)→5 P_(3/2)单光子跃迁光谱,并进一步研究了铷原子5S_(1/2)→5 P_(3/2)→5 D_(5/2)的双光子跃迁光谱。使用780nm的控制光和776nm的信号光反向共线作用到铷泡中,通过探测6 P_(3/2)→5S_(1/2)自发辐射产生的420nm蓝光信号得到铷原子5S_(1/2)→5 P_(3/2)→5 D_(5/2)双光子跃迁光谱,利用法布里-珀罗干涉仪测量了~(87)Rb和~(85)Rb的5 D_(5/2)激发态超精细能级,详细研究了铷泡温度和776nm信号光功率对~(87)Rb 5S_(1/2)(F=2)→5 D_(5/2)双光子跃迁光谱的影响。该研究工作为基于原子分子精密光谱测量提供了实验基础。  相似文献   

5.
研究了Rb(5PJ)+Rb(5PJ)→Rb(nlJ')+Rb(5S)碰撞能量合并过程,利用单模半导体激光器分别共振激发Rb原子的5P1/2或5P3/2态,利用另一与泵浦激光束反向平行的单模激光束作为吸收线探测激发态原子密度及其空间分布,吸收线分别调至5P1/2→5D3/2和5P3/2→7S1/2跃迁.由激发态原子密度和谱线荧光比得到碰撞能量合并过程的截面,对5P3/2激发,碰撞转移得到5D5/2,5D3/2和7S1/2的截面分别是(1.32士0.59)×10-14,(1.18士0.53)×10-14和(3.21士1.44)×10-15cm2;对5P1/2激发,碰撞转移到5D5/2和5D3/2的截面分别是(6.57士2.96)×10-15和(5.90士2.66)×10-15cm2.与其他的实验结果进行了比较.  相似文献   

6.
采用一束激光为泵浦光另一束激光为探测光的方法,获得CdH分子A~2Π态和X~2∑~+态之间跃迁产生的具有转动结构的多个荧光谱和激发谱带.对荧光的时间分辨研究,给出A~2Π态寿命τ_0=59.5±2.3ns,对A~2Π(v=0)态Cd原子的碰撞猝灭截面为(1.31±0.03)×10~(-15)cm~2;X~2∑~+态寿命τ_0=61.0±4.6μs,引起X~2∑~+(v=0)态寿命衰减的碰撞截面为(1.1±0.1)×10~(-18)cm~2.  相似文献   

7.
我们得到了CO经过共振态A~1∏态和e~3∑~-态的转动分辨的紫外双光子共振四光子电离光谱,并测量了它们的双光子吸收截面,σ_(Xe)~(2)、σ_(A1)~(2)=1.4×10~(99)cm~8sec~(-1),σ_(A1)~(2)=2.6×10-~(50)cm~4see_(-1).用双色共振增强的方法明确地归属了受到扰动的CO A←X双光子吸收(0.0)带.  相似文献   

8.
二步激发Cs原子至8S态,测量了碰撞转移过程Cs(6P)+Cs(5D)→Cs(6S)+Cs(nL=9S,5F)的截面,测量由7D,9S和5F态发射的荧光强度,从荧光强度比和σ(7D)值得到了σ(9S)和σ(5F),而σ(7D)已经进行过绝对测量,截面值σ(9S)和σ(5F)分别为8.7×10-15和1.3×10-14?cm2.讨论了能量转移过程9S+6S5F+6S对σ(9S)和σ(5F)的影响.  相似文献   

9.
利用激光诱导荧光方法研究了Cs_2B~1∏_u[(v′=5)]与N_2的碰撞能量转移.脉冲激光激发Cs_2基态至B~1∏_u[(v′=5)]态,池温保持在410K,N_2气压在1.5×10~2Pa~2.5×10~3Pa之间变化.荧光中含有直接荧光和碰撞转移荧光成分,记录直接荧光B~1∏_u(v′=5)→X~1∑_8~+(v″=0)的时间分辨强度.从荧光强度的对数值给出的直线斜率得到B~1∏_u(v′=5)→X~1∑_8~+(v″=0)的有效寿命,由Stern—Volmer方程,得到B~1∏_u(v′=5)→X~1∑_8~+(v″=0)的辐射寿命为(45±9)ns.B~1∏_u(v′=5)态与N_2碰撞的猝灭总截面为(9.8±1.5)×10~(-15)cm~2.用类似的方法得到B~1∏_u(v′=4,6)能级的辐射寿命.在不同的N_2气压下,测量B~1∏_u(v′=5,4,6)→X~1∑_8~+(v″=0)的时间积分荧光强度,首次得到v′=5→v′=4及v′=5→v′=6的碰撞转移截面分别为(3.9±0.8)×10~(-15)cm~2和(4.1±0.8)×10~(-15)cm~2.  相似文献   

10.
Cs蒸气中的碰撞能量合并和6P3/2和6P1/2间的激发转移   总被引:2,自引:0,他引:2  
通过激发转移和碰撞能量合并研究了Cs(62P)精细结构混合.单模半导体激光器激发基态Cs原子至6P3/2态,直接荧光是由6P3/2态发射的,敏化荧光是由精细结构碰撞转移和碰撞能量合并产生的.由相对荧光强度得到了转移截面σ(6P3/2→6P1/2)=(1.5±0.5)×10-15cm2,与其它实验结果进行了比较.  相似文献   

11.
利用激光泵浦一吸收技术,研究了在样品池中(T=385 K,H2气压400 Pa)的Rb(5DJ)+H2→RbH+H[x1∑+(υ"=0)]+H光化学反应过程.双光子激发Rb-H2混合蒸气中Rb原子至52D态,荧光中除有泵浦能级发生的直接荧光外,还包含由精细结构碰撞转移产生的敏化荧光,RbH分子是由5D原子与H2间的三体碰撞反应产生的.利用852 nm激光扫描RbH X1∑+(υ"=0→υ'=17)吸收带,△I'和△I"分别表示泵浦5D3/2和5D5/2时的吸收光强.泵浦室温下的纯Rb蒸气至5D3/2或5D5/2态,由于在低密度下52D精细结构混合可略去,故由5D3/2→5P1/2与5D5/2→5P3/2的荧光比得到泵浦率比.解速率方程组,得到5D3/2→5D5/2和5D→5D以外态的碰撞转移截面分别是9.8×10-16和2.0×10-16cm2,Rb(5DJ)+H2→RbH+H的反应截面分别是5.4×10-17(J=3/2)和2.3×10-17cm2(J=5/2),5D3/2与H2的反应活动性大于5D5/2,这与其他实验结果是一致的.  相似文献   

12.
在样品池条件下,利用原子荧光光谱方法,测量了Cs(6DJ)与H2,He碰撞中的反应与非反应能量转移截面.利用脉冲激光886nm线双光子激发Cs(6S)到Cs(6D3/2)态,原子荧光中除含有6D3/2→6P的直接荧光外,还含有6D5/2→6P的转移荧光.利用三能级模型的速率方程分析,在不同的He和H2密度下,分别测垦直接荧光与转移荧光的时间积分荧光强度比,得到了6D3/2与H2和He碰撞的精细结构转移截面分别为σ=(55±13)×10-16和(16±4)×10-16 cm2,同时确定了6D5/2与H2和He的碰撞猝灭速率系数.6D5/2态与H2的碰撞猝灭速率系数比6D5/2与He的大,它是反应与非反应速率系数之和,利用实验数据确定非反应速率系数为6.3×10-10 cm3·s-1,得到6D5/2与H2的反应截面为(2.0±0.8)×10-16 cm2.利用不同H2(或He)密度下6D5/2→6P3/2时间积分荧光强度,得到6D3/2与H2反应截面为(4.0±1.6)×10-16 cm2,6D3/2与H2反应的活性大于6D5/2.  相似文献   

13.
在9×1014~2.1×1015cm-3 Cs密度范围内,利用脉冲激光双光子激发Cs(6S1/2)到Cs(6D5/2)态,使用原子荧光光谱方法,通过三能级模型的速率方程分析,由对直接荧光和转移荧光的时间积分强度的测量,得到6D5/2→6D3/2精细结构转移截面为(2.1±0.4)×10-14cm2,而6D3/2态向6D以外态的转移截面为(1.6±0.4)×10-14cm2,它应是过程Cs(6 D3/2)+Cs(6S)→Cs(6P)+Cs(6P),6D3/2→7P3/2和6D3/2→7 P1/2碰撞转移截面之和.第二个实验可以得到6 D3/2→7P3/2和6D3/2→7 P1/2的碰撞转移截面.在1×1012~6×1012cm-3的低密度Cs蒸气中,激光双光子激发6S至6D3/2或6D5/2态,测量6DJ→6PJ'与7PJ"→6S1/2的时间积分荧光强度比,得到6D3/2→7P1/2与6D5/2→7R3/2的碰撞转移截面分别为(7.6±2.4)×10-15cm2与(1.6±0.5)×10-15cm2.由此得到碰撞能量合并的逆过程即[Cs(6D3/2)+Cs(6S1/2)→Cs(6P)+Cs(6P)]的转移截面为(1.3±0.4)×10-14cm2.  相似文献   

14.
The Rb(5Dj)+H2→RbH+H photochemical reaction has been studied. Rb vapor mixed with H2 is irradiated in a glass cell with 778-nm pulses which populate one of the 52D states by two-photon absorption. Measurements for the relative intensities of the atomic fluorescence and the absorption of the RbH product near the axis of the cell yield the rate coefficients for the Rb(5D3/2)+H2 and Rb(5D5/2)+H2 reactions, which are (3.6±1.3) ×10^-11 and (1.7±0.6)×10^-11 cm^3/s, respectively. The relative reactivity with H2 for Rb(5D3/2) is higher than that for Rb(5D5/2).  相似文献   

15.
脉冲激光双光子激发Rb(5S)态到Rb(5D)或Rb(7S)态,在样品池条件下,利用原子荧光光谱方法测量了Rb(7S-5D)-H2,He碰撞能量转移截面与池温的关系.利用三能级模型的速率方程分析.通过测量在不同H2或He密度下的直接荧光与转移荧光的时间积分强度比,在353~493 K温度范围内得到了Rb(7S-5D)-H2,He的反应与非反应碰撞能量转移截面.对于Rb(7S)+H2→Rb(5D)+H2,其转移截面随温度的增加而减小,而其逆过程的转移截面则随温度的增加而增加.对于与He的碰撞,在不同温度下7S-5D的转移截面均符合细致平衡原理,7S,5D态与H2的碰撞速率系数是反应与非反应速率系数之和,利用实验数据可以分别确定反应与非反应截面,7S态的平均反应截面与5D态平均反应截面之比约为1.5.Rb(7S)与H2的反应活动性大于Rb(5D).  相似文献   

16.
在Cs2密度约为2×1013 cm-3的纯Cs样品池中,脉冲激光激发Cs2(X1 Σg+)至B 1Πu态,利用原子和分子荧光光谱方法研究了Cs2(B 1Πu)+Cs(6S)的碰撞激发转移过程.用736 nm激发Cs2到B 1Πu(v<10),这时预解离不发生.由B 1Πu→X1 Σg+时间分辨跃迁信号得到B 1Πu态的辐射寿命为(35±7)ns,B1Πu态与Cs原子碰撞转移总截面为(4.0±0.5)×10-14 cm2.用705 nm激发至B 1Πu(v>30)态,这时发生预解离,在不同的Cs密度下,测量了I(D1),I(D2)和分子带的时间积分荧光的相对强度,得到了预解离率为(4.3±1.7)×105 s-1(对预解离到6P3/2)和(4.7±1.9)×106 s-1(对预解离至6P1/2);碰撞转移截面为(0.45±0.18)×10-14 cm2(对转移到6 P1/2)和(4.3±1.7)×10-14 cm2(对转移到6P3/2).结果表明,如果B 1Πu(v)是束缚的,6P原子由碰撞转移产生;如果B 1Πu(v)是预解离的,则6P原子由预解离和碰撞转移产生.  相似文献   

17.
K-Rb混合蒸汽中,使用Rb光谱灯和染料激光器,将基态Rb原子二步激发到7^2D态用荧光法测量了过程Rb(7^2D)+K(4S)→Rb(5S)+K(7S,5D),的碰撞转移截面,K7S,5D对Rb7^2D的荧光比中,含K7S^←→5D碰撞转移的影响,第二个实验可以消除这个影响,利用K光谱灯和染料激光器产生K7S或5D态,探测K7S(5D)对5D(7S)的荧光比,Rb7D→K7S,5D碰撞转移截面(  相似文献   

18.
掺铒碲-钨-钠玻璃基质的光谱性质研究   总被引:3,自引:3,他引:0  
制备了用于离子交换法制备光波导器件的掺铒碲-钨-钠玻璃基质。应用扎得-奥菲而特(Judd—Ofelt)理论计算了玻璃样品的三个强度参量,由强度参量计算了Er^3 离子的自发跃迁几率、荧光分支比等光谱参量;应用麦克库玻(McCumber)理论,计算了Er^3 离子在1.5μm的受激发射截面,荧光测试发现Er^3 离子的荧光半峰全宽可达65nm。比较了Er^3 离子在不同玻璃基质中的光谱特性。结果表明,Er^3 离子在碲-钨-钠玻璃中具有较高的受激发射截面和较宽的荧光半峰全宽,可以用于宽带光波导器件的制备。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号