共查询到18条相似文献,搜索用时 46 毫秒
1.
2.
双折射光纤受激喇曼散射的研究 总被引:1,自引:0,他引:1
本文详细地研究了双折射光纤的受激喇曼散射.观测到9级斯托克斯受激喇曼谱.文中讨论和测试了阈值和频移与泵浦光偏振方向间的关系;当泵浦光偏振方向与光纤椭圆核的长轴或短轴平行时的传输损耗.并根据测得的阈值在理论上计算了各级斯托克斯线的喇曼增益系数. 相似文献
3.
本文报道了准单模掺锗硅芯光纤的受激喇曼散射中的模竞争实验研究。观察到了喇曼竞争现象和喇曼跳级现象。较详细分析了受激喇曼模的竞争。 相似文献
4.
5.
本文报道在单模光纤中的受激喇曼散射的实验结果,用条纹相机测量了泵浦脉冲和喇曼斯托克斯脉冲时间上的相对延迟;结果表明,受激喇曼散射的喇曼斯托克斯脉冲大约在距光纤输入端一个分离距离的位置上形成。 相似文献
6.
7.
N信道高密度波分复石英光纤传输系统中受激喇曼散射产生的串话 总被引:2,自引:1,他引:1
本文利用前向稳态SRS耦合波理论,给出N信道DWDW石英光纤传输系统中各信道光的喇曼串话的解析表达式。同时给出估算系统极限参数的普遍表达式。这些结果适用于具有任意初始光功率、任意信道总数和任意信道间隔的系统。最后应用以上结果计算DWDM石英光纤传输系统的极限参数。 相似文献
8.
在光纤-光栅对激光脉冲压缩中,由于受激喇曼散射和自相位调制的竞争,使得泵浦激光脉冲波形重整,且自相位调制谱极不对称。本文用2m的单模保偏光纤,在产生较强的受激喇曼散射的情况下,得到较为对称的泵浦激光的自相位调制功率谱,并讨论了自相位调制功率谱的一些特点。 相似文献
9.
10.
本文采用非稳腔输出的XeCl准分子激光,首次观察到高压氢高激发态之间的受激喇曼散射,并讨论了它们产生的条件. 相似文献
11.
12.
锥形光纤纤芯直径沿着光纤长度方向均匀增大,在抑制非线性效应方面有着独特的优势。理论对比了单横模高斯光束输入时,输入纤芯直径均为50 μm、纤芯直径沿着光纤长度方向恒定、线性增大和非线性增大的变纤芯直径传能光纤的输出光谱演化和拉曼光特性。在相同条件下,输入功率10 kW时,恒定型传能光纤的输出光谱中,拉曼抑制比(定义为输出光谱中信号光峰值强度分贝值与拉曼光峰值强度分贝值之差)为33.1 dB,线性增大和非线性增大型的输出拉曼抑制比分别为47.0,48.6 dB,分别优于恒定型传能光纤13.9,15.5 dB;输入功率达17.5 kW时,恒定型传能光纤中有81.6%的输入能量被耗散或转移到其他波长,线性增大和非线性增大型仅不到2%,其输出的信号光波段能量占总输入能量的98.1%,98.9%。结果表明,使用线性增大型或非线性增大型传能光纤代替恒定型常规光纤,可以有效提高受激拉曼散射阈值,相关研究可以为大功率光纤合束器和光纤端帽的设计提供有益参考。 相似文献
13.
将液芯光纤技术与荧光增强受激拉曼散射技术相结合,能够大大增强受激拉曼散射光谱强度,降低受激拉曼散射阈值。通过对罗丹明B苯溶液在液芯光纤中的受激拉曼散射进行研究,结果表明:荧光染料Rhodamine B可以降低苯溶液的各阶受激拉曼散射阈值近一个数量级;在一定浓度范围内(10-6mol/L~10-8mol/L)各阶Stokes阈值随浓度降低而降低,并在理论上给出了解释。并且理论推导了在荧光种子作用下的四阶耦合波方程。液芯光纤中的受激拉曼光谱技术在对实现宽带受激辐射激光器、种子激光,以及生物大分子结构研究、生物分子的非生物过程研究等领域等有光明应用前景。 相似文献
14.
15.
受激拉曼散射和热效应会限制光纤激光器功率的提高。利用高功率光纤激光器的速率方程和热传导方程,理论研究了双端泵浦和分布泵浦下双包层光纤激光器的受激拉曼散射和热效应,得到了光纤中的泵浦光、激光和斯托克斯光的功率分布,光纤激光器的输出特性以及光纤中的温度分布。分析表明,当泵浦功率增大到一定值时,光纤激光器中出现SRS,一部分激光功率会转移给斯托克斯光,影响激光功率进一步提高;与双端泵浦方式相比,分布泵浦下光纤激光器的斜率效率和最大输出功率相差不大,但是,光纤中的温度分布被有效地降低,因此,分布泵浦方式更为有效。 相似文献
16.
The effect of stimulated Raman scattering (SRS) in fiber optic communications is considered. On one hand, SRS limits the launch power in a multiple-channel communication system; while on the other hand, SRS can provide optical amplification in the 1.3-μm and 1.55-μm windows. In most of the previous work these issues have been treated separately by using different assumptions. A solution is usually obtained by solving differential equations. We present a numerical method that involves the simultaneous solution of integral equations describing SRS in optical fiber. The method is general enough to be applicable for wavelength division multiplexing (WDM), optic frequency division multiplexing (OFDM), and optical amplification. However, it is efficient and simple to program and uses just a few realistic assumptions. A WDM communication system with 10 optical channels in the 1.55-μm window is studied by using this method, The data rate is above 1 Gbps. The system parameters are such that the other nonlinear effects, such as stimulated Brillouin scattering and four-wave mixing, are less significant for the system. Launch power limitations imposed by SRS are investigated for IM / DD and coherent systems. The receiver dynamic range over the wavelengths of interest is an important factor in determining the launch power limitations. An optical amplifier in the 1.3-μm window is also analyzed. The two-pump technique is investigated. With pump power levels of about 500 mw 0-dB gain can be achieved for a 30-km repeaterless link. Finally, the calculated results agree with the experiments. 相似文献
17.
18.
This paper reports an external fluorescence seeding technology enhancing the stimulated Raman scattering (SRS) in liquid‐core optical fiber (LCOF). By surrounding a small section of LCOF with a glass capillary and a solution of Rhodamine 6G filled between them to separate fluorescent dye and Raman medium, the initial intensity of SRS is linearly amplified by external fluorescence seeding, and then the SRS of LCOF can be enhanced effectively. Experimental results show that both the concentration of fluorescent dye and the seeding position have an influence on enhancement of SRS. The maximum enhancement of Stokes lines is obtained when the concentration of dye solution is optimized at ~10−6 mol/l and seeding position is located at the input end. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献