首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider (d 0 + 2)-dimensional configurations with global strings in two extra dimensions and a flat metric in d 0 dimensions, endowed with a warp factor e depending on the distance l from the string center. All possible regular solutions of the field equations are classified by the behavior of the warp factor and the extradimensional circular radius r(l). Solutions with r → ∞ and r → const > 0 as l → ∞ are interpreted in terms of thick brane-world models. Solutions with r → 0 as ll c > 0, i.e., those with a second center, are interpreted as either multibrane systems (which are appropriate for large enough distances l c between the centers) or as Kaluza-Klein-type configurations with extra dimensions invisible due to their smallness. In the case of the Mexican-hat symmetry-breaking potential, we build the full map of regular solutions on the (ɛ, Γ) parameter plane, where ɛ acts as an effective cosmological constant and Γ characterizes the gravitational field strength. The trapping properties of candidate brane worlds for test scalar fields are discussed. Good trapping properties for massive fields are found for models with increasing warp factors. Kaluza-Klein-type models are shown to have nontrivial warp factor behaviors, leading to matter particle mass spectra that seem promising from the standpoint of hierarchy problems. The text was submitted by the authors in English.  相似文献   

2.
The known problem of flow transition near a circular cylinder at Re = 40 from a symmetrical form to the Karman vortex street can be considered as the problem of vortex wave development and intensification. Development of three bundles of vortex waves of low intensity is observed in a wake of a cylinder; these bundles are easily visualized as the structures of relative vorticity $ \bar \Omega $ \bar \Omega = Ω(t 1) − Ω(t 0): difference of vorticity Ω at two time moments, t 0 being fixed. In the field of $ \bar \Omega $ \bar \Omega the alternating structure of quadrupoles is characterized by linear parameter l = h/d: the ratio of the width of the central bundle of vortex waves to the distance between the centers of quadrupoles of a “single sign”. When l = 0.281 is achieved, which coincides with the value of the same parameter of a stable Karman street, the transition from symmetrical streamlining by viscous incompressible liquid to the vortex street occurs.  相似文献   

3.
I. E. Mazets 《Technical Physics》2000,45(10):1238-1240
The dipole moment of each of two uncharged conducting spheres with radius R in an external electric field was calculated. The distance between the centers of the spheres is 2l. It was shown that, if R/l≲0.8, the influence of higher multipole moments is negligible.  相似文献   

4.
We study possible restrictions on the structure of curvature corrections to gravitational theories in the context of their corresponding Kac–Moody algebras, following the initial work on E 10 in Damour and Nicolai [Class Quant Grav 22:2849 (2005)]. We first emphasize that the leading quantum corrections of M-theory can be naturally interpreted in terms of (non-gravity) fundamental weights of E 10. We then heuristically explore the extent to which this remark can be generalized to all over-extended algebras by determining which curvature corrections are compatible with their weight structure, and by comparing these curvature terms with known results on the quantum corrections for the corresponding gravitational theories.  相似文献   

5.
Constraints for the constants of hypothetical Yukawa-type corrections to the Newtonian gravitational potential are obtained from analysis of neutron scattering experiments. Restrictions are obtained for the interaction range between 10−12 and 10−7 cm, where Casimir force experiments and atomic-force microscopy are not sensitive. Experimental limits are obtained also for nonelectromagnetic inverse-power-law neutron-nucleus potentials. Some possibilities are discussed to strengthen these constraints. The text was submitted by the author in English.  相似文献   

6.
For Einstein's gravitational equations with fourth-order corrections being proportional to the square of an elementary length l, we discuss the behaviour of high-frequency waves. It is shown that (1) only waves with lengths λ ? can generate a macroscopic avarage background (for λ < l, only the terms αl2 are decisive such that one has the same situation as in a pure fourth-order theory without Einstein term which cannot be interpreted as gravitational theory), (2) for λ ? l the background metric is purely determined via the second-order derivative Einstein tensor (formally one obtains the same equations for the background as in the non-modified Einsteinian theory), and (3) only waves corresponding to the massless and the massive spin-two gravitons contribute to background curvature; in the geometrical-optics approximation, these both particle sorts are moving independent of each other and satisfy a conservation law for the total number of m = 0 and massive spin-two gravitons, respectively. The results obtained in this paper corroborate partly the conclusions drawn in the weak-field approximation [11, 15, 18].  相似文献   

7.
We calculate the energies of three-quark states with definite permutation symmetry (i.e. of SU(6) multiplets) in the N=0, 1, 2 shells, confined by the Y-string three-quark potential. The exact Y-string potential consists of one term, the so-called three-string term, and three angle-dependent two-string terms. Due to this technical complication we treat the problem at three increasingly accurate levels of approximation: (1) the (approximate) three-string potential expanded to first order in trigonometric functions of hyper-spherical angles; (2) the (approximate) three-string potential to all orders in the power expansion in hyper-spherical harmonics, but without taking into account the transition(s) to two-string potentials; (3) the exact minimal-length string potential to all orders in a power expansion in the hyper-spherical harmonics, and taking into account the transition(s) to two-string potentials. We show the general trend of improvement of these approximations: the exact non-perturbative corrections to the total energy are of the order of one per cent, as compared with approximation (2), yet the exact energy differences between the [20,1+],[70,2+],[56,2+],[70,0+]-plets are shifted to 2:2:0.9, from the Bowler and Tynemouth separation rule 2:2:1, which is obeyed by approximation (2) at the one per cent level. The precise value of the energy separation of the first radial excitation (“Roper”) [56,0+]-plet from the [70,1]-plet depends on the approximation, but does not become negative, i.e. the “Roper” remains heavier than the odd-parity [70,1]-plet in all of our approximations.  相似文献   

8.
We present the construction of an exponentially accurate time-dependent Born–Oppenheimer approximation for molecular quantum mechanics. We study molecular systems whose electron masses are held fixed and whose nuclear masses are proportional to ε−4, where ε is a small expansion parameter. By optimal truncation of an asymptotic expansion, we construct approximate solutions to the time-dependent Schr?dinger equation that agree with exact normalized solutions up to errors whose norms are bounded by , for some C and γ >0. Received: 13 February 2001 / Accepted: 13 July 2001  相似文献   

9.
Under a particular choice of the Ernst potential, we solve analytically the Einstein–Maxwell equations to derive a new exact solution depending on five parameters: the mass, the angular-momentum (per unit mass), α, the electromagnetic-field strength, k, the parameter-p and the Kerr-NUT parameter, l. This (Petrov Type D) solution is cylindrically symmetric and represents the curved background around a charged, rotating cosmic string, surrounded by gravitational and electromagnetic waves, under the influence of the Kerr-NUT parameter. A C-energy study in the radiation zone suggests that both the incoming and the outgoing radiation is gravitational, strongly focused around the null direction and preserving its profile. In this case, the absence of the k-parameter from the C-energy implies that, away from the linear defect the electromagnetic field is too weak to contribute to the energy-content of the cylindrically symmetric space-time under consideration. In order to explain this result, we have evaluated the Weyl and the Maxwell scalars near the axis of the linear defect and at the spatial infinity. Accordingly, we have found that the electromagnetic field is concentrated (mainly) in the vicinity of the axis, while falling-off prominently at large radial distances. However, as long as k ≠ 1, the non-zero Kerr-NUT parameter enhances those scalars, both near the axis and at the spatial infinity, introducing some sort of gravitomagnetic contribution.  相似文献   

10.
The classical treatment of quasi-spherical vesicle undulations has, in the present work, been reviewed and extended to systems, which are affected by a gravitational field caused by a density difference across the membrane. The effects have been studied by the use of perturbation theory leading to corrections to the mean shape and the fluctuation correlation matrix. These corrections have been included in an analytical expression for the flicker spectrum to probe how the experimentally accessible spectrum changes with gravity. The results are represented in terms of the gravitational parameter, g 0 = ΔρgR 4/κ. The contributions from gravity are in most experimental situations small and thus negligible, but for values of g0 above a certain limit, the perturbational corrections must be included. Expressions for the relative error on the flicker spectrum have been worked out, so that it is possible to define the regime where gravity is negligible. An upper limit of g0 has also been identified, where the error in all modes of the flicker spectrum is significant due to distortion of the mean shape. Received 9 July 2002 and Received in final form 15 November 2002 RID="a" ID="a"e-mail: jonas@kemi.dtu.dk RID="b" ID="b"e-mail: ipsen@memphys.sdu.dk  相似文献   

11.
The so-called μ-deformed oscillator (or μ-oscillator) introduced by A. Jannussis, though it possesses rather exotic properties with respect to other better known deformed oscillator models, also has a good potential for diverse physical applications. In this paper, the corresponding μ-Bose gas model based on μ-oscillators is developed. Within this model, the intercepts l(2) \lambda^{{(2)}}_{}(K) and l(3) \lambda^{{(3)}}_{}(K) of two- and three-particle momentum correlation functions are calculated with the goal of possible application for modeling the non-Bose-type behavior of the intercepts of two- and three-pion correlations, observed in the experiments on relativistic heavy-ion collisions. In the derivation of intercepts, a fixed order of approximation in the deformation parameter μ is assumed. For the asymptotics of the intercepts l(2) \lambda^{{(2)}}_{}(K) and l(3) \lambda^{{(3)}}_{}(K) , we derive exact analytical formulas. The results for l(2) \lambda^{{(2)}}_{}(K) are compared with experimental data, and with earlier known results drawn using other deformed Bose gas models.  相似文献   

12.
A quantum sl(2,ℝ) coalgebra (with deformation parameter z) is shown to underly the construction of a large class of superintegrable potentials on 3D curved spaces, that include the nonconstant curvature analog of the spherical, hyperbolic, and (anti-)de Sitter spaces. The connection and curvature tensors for these “deformed“ spaces are fully studied by working on two different phase spaces. The former directly comes from a 3D symplectic realization of the deformed coalgebra, while the latter is obtained through a map leading to a spherical-type phase space. In this framework, the nondeformed limit z → 0 is identified with the flat contraction leading to the Euclidean and Minkowskian spaces/potentials. The resulting Hamiltonians always admit, at least, three functionally independent constants of motion coming from the coalgebra structure. Furthermore, the intrinsic oscillator and Kepler potentials on such Riemannian and Lorentzian spaces of nonconstant curvature are identified, and several examples of them are explicitly presented.  相似文献   

13.
The approximately analytical scattering state solutions of the l-wave Klein-Gordon equation with the unequal scalar and vector Hulthén potentials are carried out by an improved new approximate scheme to the centrifugal term. The normalized analytical radial wave functions of the l-wave Klein-Gordon equation with the mixed Hulthén potentials are presented and the corresponding calculation formula of phase shifts is derived. It is well shown that the energy levels of the continuum states reduce to those of the bound states at the poles of the scattering amplitude. Some useful figures are plotted to show the improved accuracy of our results and two special cases for s-wave (l=0) and for l=0 and equal scalar and vector Hulthén potentials are also studied briefly.  相似文献   

14.
We elaborate on a generalization of the 2D wormlike chain (WLC) model that accounts for the presence of long-range correlations (LRC) in the intrinsic curvature distribution of eukaryotic DNA. This model predicts some decrease of the DNA persistence length resulting from some large-scale intrinsic curvature induced by sequence-dependent persistent random distribution of local bending sites. When assisting exact analytical calculations by numerical DNA simulations, we show that the conjugated contributions of i) the thermal curvature fluctuations characterized by the “dynamic” persistence length ℓ p d = 2A , where A is the elastic bending modulus, and ii) the intrinsic LRC curvature disorder of amplitude σ o and Hurst exponent H > 1/2 , characterized by a “static” persistence length ℓ p H = A 1/2H σ o −1/H Γ(1/2H + 1), can be described by a continuum of generalized WLC (GWLC) models parametrized by the LRC exponent H. We use perturbation analysis to investigate the two limiting cases of weak static disorder (w H ≪ 1 and weak dynamical fluctuations (1/w H ≪ 1 , where w H = l p d /l p H is a dimensionless parameter. From a quantitative point of view, our study demonstrates that even for a small value of the LRC (H ≃ 0.6–0.8) static disorder amplitude σ o ∼ 10−2, as previously reported for genomic DNA, the decrease of the persistence length from the WLC prediction l p d can be very significant, up to twofold. The implications of these results on the first steps of compaction of DNA in eukaryotic cells are discussed.  相似文献   

15.
We present the exact solution of Einstein’s equation corresponding to a static and plane symmetric distribution of matter with constant positive density located below z = 0. This solution depends essentially on two constants: the density ρ and a parameter κ. We show that these space–times finish down below at an inner singularity at finite depth. We show that for κ ≥ 0.3513 . . . the dominant energy condition is satisfied all over the space–time. We match this solution to the vacuum one and compute the external gravitational field in terms of slab’s parameters. Depending on the value of κ, these slabs can be attractive, repulsive or neutral. In the first case, the space–time also finishes up above at an empty repelling singular boundary. In the other cases, they turn out to be semi-infinite and asymptotically flat when z → ∞. We also find solutions consisting of joining an attractive slab and a repulsive one, and two neutral ones. We also discuss how to assemble a “gravitational capacitor” by inserting a slice of vacuum between two such slabs.  相似文献   

16.
By considering the Robertson-Walker, line element exact solutions are obtained for radiation-filled cosmological differential equations of Brans-Dicke theory with the assumption thatk/k = 1/R, wherek denotes the gravitational variable andR is the radius of curvature and the dot denotes the differentiation with respect to time. Under this assumption, we obtain exact solutions corresponding to the three values of curvature indexK (1,0, –1). We can obtain physically realistic solutions in all the three cases for all values of coupling constant > –2. The radius of curvature increases linearly with respect to the age of the universe, while the gravitational variablek varies directly as the square of the radius of the universe. The solution obtained contradicts Dirac's hypothesis in which the gravitational constant should decrease with time in the expanding universe.  相似文献   

17.
The quantum corrections to the thermodynamic properties of polar hard sphere fluids and fluid mixtures are estimated taking into account the influence of dipole and quadrupole moments. Expressions are given for the second virial coefficient, free energy and pressure and results are given for different values ofμ* andϑ*. The first order quantum correction arises due to the translational contribution only. The quantum effect increases with density,μ* andϑ*. Numerical results are also estimated for binary mixtures of (i) hard spheres and dipole hard spheres and (ii) hard spheres and quadrupole hard spheres. The ‘excess’ free energy for dipole hard sphere binary mixture is also reported. It is found that the ‘excess’ quantum effect depends on the concentration and the particle diameter ratio and increases with increase ofμ* andϑ*.  相似文献   

18.
The approximately analytical bound state solutions of the l-wave Klein-Gordon and k-state Dirac equations with the mixed Eckart potentials are carried out by a proper approximation to the centrifugal term. The analytical radial wave functions of the l-wave Klein-Gordon and k-state Dirac equations with the mixed Eckart potentials are presented and the corresponding energy equations are derived. Two special cases for k=1 and for k=1 and β=0 are studied briefly. Finally, we also verify the rationality of this approximation.  相似文献   

19.
We construct exact gravitational field solutions for a relativistic particle localized on a tensional brane in brane-induced gravity. They are a generalization of gravitational shock waves in 4D de Sitter space. We provide the metrics for both the normal branch and the self-inflating branch Dvali-Gabadadze-Porrati brane worlds, and compare them to the 4D Einstein gravity solution and to the case when gravity resides only in the 5D bulk, without any brane-localized curvature terms. At short distances the wave profile looks the same as in four dimensions. The corrections appear only far from the source, where they differ from the long distance corrections in 4D de Sitter space. We also discover a new nonperturbative channel for energy emission into the bulk from the self-inflating [corrected] branch, when gravity is modified at the de Sitter radius.  相似文献   

20.
New features of the dependence of the average travel distance l of dislocations on the magnetic field B have been found in an investigation of the magnetostimulated dislocation mobility in LiF crystals: A transition has been found from ordinary proportionality lB 2 to saturation l≈ const in high fields B. It is shown that the experimental points can be described satisfactorily by the theoretical dependence l∝ [(B 0/B)2+1]−1 (B 0≈0.8 T), typical for the mechanism of longitudinal spin relaxation in a system of radical pairs, which are supposedly formed when dislocation nuclei interact with paramagnetic impurity centers. According to the theory, the level of the field B 0 is determined by the characteristic frequency of the oscillations of the internal fields in the lattice, which for B 0∼1 T is of the order of 1011s−1, which corresponds to the typical frequency of characteristic oscillations of dislocation segments between pinning centers, which, naturally, does not depend on temperature. This in turn explains the fact that the measured values of B 0 are the same at 293 K and 77 K. Pis’ma Zh. éksp. Teor. Fiz. 70, No. 11, 749–753 (10 December 1999)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号