首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Yue-Liang Wu 《中国物理C(英文版)》2017,41(10):103106-103106
The relativistic Dirac equation in four-dimensional spacetime reveals a coherent relation between the dimensions of spacetime and the degrees of freedom of fermionic spinors. A massless Dirac fermion generates new symmetries corresponding to chirality spin and charge spin as well as conformal scaling transformations. With the introduction of intrinsic W-parity, a massless Dirac fermion can be treated as a Majorana-type or Weyl-type spinor in a six-dimensional spacetime that reflects the intrinsic quantum numbers of chirality spin. A generalized Dirac equation is obtained in the six-dimensional spacetime with a maximal symmetry. Based on the framework of gravitational quantum field theory proposed in Ref. [1] with the postulate of gauge invariance and coordinate independence, we arrive at a maximally symmetric gravitational gauge field theory for the massless Dirac fermion in six-dimensional spacetime. Such a theory is governed by the local spin gauge symmetry SP(1,5) and the global Poincar′e symmetry P(1,5)= SO(1,5) P~(1,5) as well as the charge spin gauge symmetry SU(2). The theory leads to the prediction of doubly electrically charged bosons. A scalar field and conformal scaling gauge field are introduced to maintain both global and local conformal scaling symmetries. A generalized gravitational Dirac equation for the massless Dirac fermion is derived in the six-dimensional spacetime. The equations of motion for gauge fields are obtained with conserved currents in the presence of gravitational effects. The dynamics of the gauge-type gravifield as a Goldstone-like boson is shown to be governed by a conserved energy-momentum tensor, and its symmetric part provides a generalized Einstein equation of gravity. An alternative geometrical symmetry breaking mechanism for the mass generation of Dirac fermions is demonstrated.  相似文献   

2.
We consider various gauge fields coupled to the free Dirac equation according to symmetry principles. The gauge fields are treated as classical, unquantized fields. Sufficiently strong time-independent fields may give rise to spontaneous particle creation and to the decay of the symmetric Dirac vacuum into a new ground state with broken symmetry. The vacuum stability of the Dirac field is studied for the cases of external electromagnetic (U(1)), gravitational (Poincaré group including torsion) and Yang-Mills (SU(2)) potentials.  相似文献   

3.
In graphene,conductance electrons behave as massless relativistic particles and obey an analogue of the Dirac equation in two dimensions with a chiral nature.For this reason,the bounding of electrons in graphene in the form of geometries of quantum dots is impossible.In gapless graphene,due to its unique electronic band structure,there is a minimal conductivity at Dirac points,that is,in the limit of zero doping.This creates a problem for using such a highly motivated new material in electronic devices.One of the ways to overcome this problem is the creation of a band gap in the graphene band structure,which is made by inversion symmetry breaking(symmetry of sublattices).We investigate the confined states of the massless Dirac fermions in an impured graphene by the short-range perturbations for "local chemical potential" and "local gap".The calculated energy spectrum exhibits quite different features with and without the perturbations.A characteristic equation for bound states(BSs) has been obtained.It is surprisingly found that the relation between the radial functions of sublattices wave functions,i.e.,f_m~+(r),g_m~+(r),and f_m~-(r),g_m~-(r),can be established by SO(2) group.  相似文献   

4.
李固强 《中国物理》2005,14(3):468-471
The divergences at all levels for the statistical entropy of a plane symmetry black hole arising from the massless Dirac field are considered using the brick-wall model. It is shown that if we ignore the usual contribution from the vacuum surrounding the system, then the statistical entropy consists of two parts: one is the linearly divergent term which has the geometric character, the other consists of two logarithmically divergent terms which are not proportional to the surface area of the horizon. The entropy of the Dirac field on extremal plane symmetry spacetime background has higher divergence than usual.  相似文献   

5.
The ECSK and Yang-Mills theories are constructed with emphasis on their fiber bundle structure. In particular, the momentum tensor is derived as the Noether current of translational symmetry. The structure of the ECSK theory as a gauge theory of the Poincaré group is discussed. A theory of a Dirac field exhibiting internal affine symmetry, i.e., full internal Poincaré symmetry, is described. Aspects of the topological-geometric foundations of these theories are discussed, and some intuitive interpretations are presented.  相似文献   

6.
Exact integration of the Dirac equation is a classical topic in mathematical physics, which has been researched for several decades. A basic method is complete segregation of the variables. Such separation can be attained in a Dirac equation containing an external electromagnetic field in Minkowski space by means of complete sets of first-order symmetry matrix operators. The purpose of this paper is to solve an analogous case for a free massless Dirac equation. That task has a special feature because external fields are absent and the massless equation is reduced to a D'Alambert equation by squaring. Nevertheless, interest attaches to states defined by the first-order symmetry-operator matrices that cannot be obtained by setting the mass to zero in systems containing a mass Dirac equation.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 105–110, January, 1995.  相似文献   

7.
Conditions necessary for the existence of a class of fields that can be used to construct the spinor symmetry operators for the Dirac equation in Riemannian space are specified in the present paper. The metrics of spaces with four-dimensional groups of motions in which these fields exist are indicated. A class of spaces is identified in which the Dirac equation admits no separation of variables within the framework of the definition adopted, but the algebra of symmetry of the Dirac equation satisfies the conditions of theorems of the noncommutative intergrability.  相似文献   

8.
The field of a Dirac monopole is constructed in the framework of symplectic mechanics by imposing rotational and time translation invariance on the motion of a test particle. Quantization is achieved by the geometric method of Kostant and Souriau, which allows for an elegant solution of the quantum symmetry problem. Space-reflection symmetry is studied in addition.  相似文献   

9.
We show that Bose-Einstein condensates in a honeycomb optical lattice can be described by a nonlinear Dirac equation in the long wavelength, mean field limit. Unlike nonlinear Dirac equations posited by particle theorists, which are designed to preserve the principle of relativity, i.e., Poincaré covariance, the nonlinear Dirac equation for Bose-Einstein condensates breaks this symmetry. We present a rigorous derivation of the nonlinear Dirac equation from first principles. We provide a thorough discussion of all symmetries broken and maintained.  相似文献   

10.
11.
In this work, we discuss the relativistic Landau–He–McKellar–Wilkens quantization and relativistic bound states solutions for a Dirac neutral particle under the influence of a Coulomb-like potential induced by the Lorentz symmetry breaking effects. We present new possible scenarios of studying Lorentz symmetry breaking effects by fixing the space-like vector field background in special configurations. It is worth mentioning that the criterion for studying the violation of Lorentz symmetry is preserving the gauge symmetry.  相似文献   

12.
We study the Kähler-Dirac equation which linearizes the laplacian on the space of antisymmetric tensor fields. In flat space-time it is equivalent to the Dirac equation with internal symmetry and on the lattice it reproduces Susskind fermions. The KD equation in curved space-time differs from the Dirac equation by coupling the gravitational field to the internal symmetry generators. This new way of treating fermionic degrees of freedom may lead to a solution of the generation puzzle but is in conflict with the equivalence principle and with Lorentz invariance on the Planck-mass scale.  相似文献   

13.
Based on the opinion that the γ-matrices in Dirac equation have structure and are decomposable, we decompose the γ-matrices into the direct product of the operators in the spin space and the particle-antiparticle space. By using this method, we attain a complete set of commutative operators, a set of quantum numbers and the correspondingly eigen solutions of the Hamiltonian for a charged Dirac particle moving in a uniform constant magnetic field. In addition, the dynamic supersymmetry of the Hamiltonian is unveiled. Spin symmetry breaking and particle-antiparticle symmetry breaking are discussed, and the supersymmetric group operator of the degenerate spin subspace resulting from the spin residual supersymmetry is found.  相似文献   

14.
We study the problem of a radiating source composed of a Dirac field with cylindrical symmetry.  相似文献   

15.
Electron fractionalization is intimately related to topology. In one-dimensional systems, fractionally charged states exist at domain walls between degenerate vacua. In two-dimensional systems, fractionalization exists in quantum Hall fluids, where time-reversal symmetry is broken by a large external magnetic field. Recently, there has been a tremendous effort in the search for examples of fractionalization in two-dimensional systems with time-reversal symmetry. In this Letter, we show that fractionally charged topological excitations exist on graphenelike structures, where quasiparticles are described by two flavors of Dirac fermions and time-reversal symmetry is respected. The topological zero modes are mathematically similar to fractional vortices in p-wave superconductors. They correspond to a twist in the phase in the mass of the Dirac fermions, akin to cosmic strings in particle physics.  相似文献   

16.
Nonequivalent complete sets of first-order symmetry operators of the Dirac free equation determine the Yang-Mills field, permitting complete variable separation in the Dirac equations with an external Yang-Mills field. Typical representatives of the classes of permissible fields are considered.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 30–34, October, 1989.  相似文献   

17.
In this paper, we consider a two-dimensional integrable and conformal invariant field theory with two Dirac spinors and two scalar fields. This model has chiral symmetry and CP-like symmetry. Moreover, this model also has a Neother current depending only on the matter field. At last, we bosonize the spinor fields.  相似文献   

18.
A classification is performed of massless gauge fields admitting one first-order symmetry operator of special type for the Dirac equation in Minkowski space. The gauge group is chosen to be SU(3). The factors multiplying the derivatives of the symmetry operator do not contain generators of the gauge group, which allows us to classify the fields according to symmetry operators of the free Dirac equation.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 22–21, June, 1989.  相似文献   

19.
In this paper we demonstrate that neutral Dirac particles in external electric fields, which are equivalent to generalized Dirac oscillators, are physical examples of quasi-exactly solvable systems. Electric field configurations permitting quasi-exact solvability of the system based on the sl(2) symmetry are discussed separately in the spherical, cylindrical, and Cartesian coordinates. Some exactly solvable field configurations are also exhibited.  相似文献   

20.
An effective theory for dark matter has recently been proposed. The key assumption is that the dark matter particle which is a Dirac fermion is protected from decaying by a global U(1) symmetry. We point out that quantum gravity effects will violate this symmetry and that the dark matter candidate thus decays very fast. In order to solve that problem, we propose to consider a local gauge symmetry which implies a new force in the dark matter sector. It is likely that this new local U(1) symmetry will need to be spontaneously broken leading for a range of the parameters of the model to a Sommerfeld enhancement of the annihilation cross sections which is useful to explain the Pamela and ATIC results using a weakly interacting massive particle with a mass in the TeV range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号