首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Liquid crystals》1997,23(5):741-748
The shear flow induced deformations of a nematic liquid crystal layer have been modelled numerically for the case of flow-aligning nematics. The director deviation from the plane of shear, which was predicted earlier for special surface orientation angles, has been confirmed. This deformation takes a form of director rotation about the axis perpendicular to the layer plane. As a result, transverse flow of the nematic arises. The rotation angle is close to pi at sufficiently strong shear stress, and the director is oriented at the usual flow alignment angle in a significant part of the layer. The director coming out of the shear plane should not be treated as a separate effect taking place during the flow, but rather as a way in which the usual flow-aligned structure is achieved.  相似文献   

2.
We study shear flow in liquid crystal cells with elastic deformations using a lattice Boltzmann scheme that solves the full, three-dimensional Beris-Edwards equations of hydrodynamics. We consider first twisted and hybrid aligned nematic cells, in which the deformation is imposed by conflicting anchoring at the boundaries. We find that backflow renders the velocity profile non Newtonian, and that the director profile divides into two regions characterized by different director orientations. We next consider a cholesteric liquid crystal, in which a twist deformation is naturally present. We confirm the presence of secondary flow for small shear rates, and are able to follow the dynamical pathway of shear-induced unwinding, for higher shear rates. Finally, we analyze how the coupling between shear and elastic deformation can affect shear banding in an initially isotropic phase. We find that for a nematic liquid crystal, elastic distortions may cause an asymmetry in the dynamics of band formation, whereas for a cholesteric, shear can induce twist in an initially isotropic sample.  相似文献   

3.
The behavior of a colloidal suspension of rodlike fd viruses in the nematic phase, subjected to steady state and transient shear flows, is studied. The monodisperse nature of these rods combined with relatively small textural contribution to the overall stress make this a suitable model system to investigate the effects of flow on the nonequilibrium phase diagram. Transient rheological experiments are used to determine the critical shear rates at which director tumbling, wagging, and flow-aligning occurs. The present model system enables us to study the effect of rod concentration on these transitions. The results are in quantitatively agreement with the Doi-Edwards-Hess model. Moreover, we observe that there is a strong connection between the dynamic transitions and structure formation, which is not incorporated in theory.  相似文献   

4.
The collective periodic motions of liquid-crystalline polymers in a nematic phase in shear flow have, for the first time, been simulated at the particle level by Brownian dynamics simulations. A wide range of parameter space has been scanned by varying the aspect ratio L/D between 10 and 60 at three different scaled volume fractions Lphi/D and an extensive series of shear rates. The influence of the start configuration of the box on the final motion has also been studied. Depending on these parameters, the motion of the director is either characterized as tumbling, kayaking, log-rolling, wagging, or flow-aligning. The periods of kayaking and wagging motions are given by T=4.2(Lphi/D)gamma(-1) for high aspect ratios. Our simulation results are in agreement with theoretical predictions and recent shear experiments on fd viruses in solution. These calculations of elongated rigid rods have become feasible with a newly developed event-driven Brownian dynamics algorithm.  相似文献   

5.
We simulate the alignment dynamics of cholesteric (chiral) rod-like liquid crystals by using a Landau-de Gennes (LdG) expression for microstructure evolution in response to flow. This study is motivated by recent advances in novel cholesteric nanorod dispersions. Prior work on the modelling of cholesterics has suffered from the restriction of helicity to only a single direction, often with a pre-imposed pitch, due to numerical difficulties. This has severely limited cholesteric modelling in regard to both accuracy and experimental relevance. Our simulations avoid this limitation. Relevant forces on rods include solvent-rod drag, nematic alignment, microstructure elasticity and chiral twist. Phase diagrams are developed to demonstrate the response of these systems to variations in chiral and flow forces. Our results indicate that for low shear rates, chiral and elastic forces prevent the rods from moving in response to flow. At high shear rates, the rods tumble and form unique transient structures (combinations of tumbling and cholesteric phases) as flow forces and chiral forces compete. Even if slight alignment is induced at the boundaries, the phase diagram substantially changes, chiefly by constraining the possible chiral phases. This work has immediate relevance to applications which exploit the optical properties of films solidified from cholesteric dispersions.  相似文献   

6.
The authors study shear flow in hybrid-aligned nematic cells under the action of an applied electric field by solving numerically a hydrodynamic model. The authors apply this model to a flow-aligning nematic liquid crystal (4'-n-pentyl-4-cyanobiphenyl) and obtain the director's configuration and the velocity profile at the stationary state. The authors calculate the local and apparent viscosities of the system and found that the competition between the shear flow and the electric field gives rise to an interesting non-Newtonian response with regions of shear thickening and thinning. The results also show an important electrorheological effect ranging from a value a bit larger than the Miesowicz viscosity etab [Nature (London) 17, 261 (1935)] for small electric fields and large shear flows to etac for large electric fields and small shear flows. The analysis of the first normal stress difference shows that for small negative shear rates, the force between the plates of the cell is attractive, while it is repulsive for all other values of shear rates. However, under the application of the electric field, one can modify the extent of the region of attraction. Finally, the authors have calculated the dragging forces on the plates of the cell and found that it is easier to shear in one direction than in the other.  相似文献   

7.
The change in the selective reflection spectra of cholesteric liquid crystals with shear is described, and the results indicate that, although it appears to be a promising technique for flow visualization in aerodynamic testing, the method is only suitable for approximate measurement of shear. An improved method for visualising flow is proposed that utilizes a shear-induced texture change from the uncoloured focal-conic state to the selectively reflecting Grandjean state. The sensitivity of the transition to shear is investigated and the effects of adding silica particles to modify the viscosity is examined.  相似文献   

8.
Structures with a periodic in-plane liquid crystal director field modulation induced by an electric field are studied in cholesteric liquid crystals (CLCs). A phenomenon of the electric-field-induced instability in a planarly aligned cholesteric cell is used to create these undulated structures. The initial field-off state is planarly aligned with the cholesteric helix axis oriented perpendicular to the cell substrates. The interaction of the CLC with an electric field results in modulation of the refractive index, which is visualised as stripe domains oriented either along or perpendicular to the rubbing direction at cell alignment surfaces. The threshold electric field for the undulation appearance and a period of stripes are measured experimentally for three Grandjean zones (ratio d/p ~ 0.5, 1.0, and 1.5, where d is a cell thickness and p is the natural cholesteric pitch). For the zone with d/p ~ 1.0 using numerical simulations, we describe in detail the director distribution at an applied electric field. It is found that the in-plane undulated structure is characterised by a conical director rotation on moving along the alignment direction. The conical axis is tilted with respect to the alignment axis. The sign of the tilt angle depends on the handedness of CLC.  相似文献   

9.
A reorientation of cholesteric liquid crystal with a large helix pitch induced by the electrically controlled ionic modification of the surface anchoring has been studied. In initial state, the cholesteric helix is untwisted completely owing to the normal surface anchoring specified by the cations adsorbed at the substrates. As a result, the homeotropic director configuration is observed within the cell. Under the action of DC electric field, one of the substrates becomes free from the layer of surface active cations, therefore, setting the planar surface anchoring. The latter, in turn, leads to the formation of the hybrid chiral structure. The threshold value and dynamic parameters have been estimated for this process as well as the range of control voltages, which do not allow the electrohydrodynamic instabilities. The twisted hybrid director configuration observed in the experiment has been analysed by means of the simulation of polarisation change of light propagating through the cholesteric layer with asymmetric (planar and homeotropic) surface anchoring on the cell substrates.  相似文献   

10.
Ultrasonic absorption has been measured in the cholesteric and isotropic phases of cholesteryl valerate as a function of both temperature and frequency. The anomalous absorption observed in the cholesteric phase has been interpreted by considering the coupling of the sound wave to the director fluctuations. In the isotropic phase coupling of the sound wave to the tensor order parameter is considered to analyse the absorption results.  相似文献   

11.
12.
Lattice Boltzmann simulations are used to explore the behavior of liquid crystals subject to Poiseuille flow. In the nematic regime at low shear rates we find two possible steady-state configurations of the director field. The selected state depends on both the shear rate and the history of the sample. For both director configurations there is clear evidence of shear thinning, a decrease in the viscosity with increasing shear rate. Moreover, at very high shear rates or when the order parameter is large, the system transforms to a ‘log-rolling state’ with boundary layers that may exhibit oscillatory behavior.  相似文献   

13.
The shear rate dependence of material functions such as shear viscosity (η) and the first normal stress difference (N1) were given and interpreted earlier by Kiss and Porter. Their widely accepted work revealed the possibility of having a negative minimum of N1 for polymeric liquid crystals. In this work, we disclose for the first time the evidence of two negative N1 minima on a sheared cellulosic lyotropic system. The lower shear rate minimum is ascribed to the uncoiling of the cholesteric helix, as theoretically predicted earlier. Our findings contribute also to the understanding of the other minimum already reported in the literature and attributed to the nematic director tumbling mode. Moreover, the elastic change that the LC‐HPC sample undergoes during the helix unwinding of the cholesteric structure is also by means of oscillatory measurements. This study is a contribution for the understanding of the structure‐properties relationship linked with the complex rheological behavior of chiral nematic cellulose‐based systems and may help to improve their further processing. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 821–830  相似文献   

14.
We report the finding that a chiral cyclopeptide dissolved in a nematic liquid crystal (LC) host could aggregate in a manner that is controlled by the texture (LC director configuration) of a cholesteric phase that is induced by the cyclopeptide itself. On one hand, with the fingerprint texture, where the helical axis formed by rotating LC molecules, that lies in the substrate plane, the cyclopeptide can use the LC texture as a template to aggregate and form long-range-ordered ribbons that mimic the helical configuration of the LC director. On the other hand, with the planar texture, where the helical axis is normal to the substrate plane, the cyclopeptide can migrate into the "oily-streak" defect regions of the cholesteric phase and stabilize a network of defects that dictates the electrooptical response of the LC. This is the first example of a molecular species exhibiting such a structured aggregation and defect stabilization effect in a cholesteric LC, but similar phenomena were previously reported for platinum nanoparticles and silica colloidal particles, respectively, dispersed in a cholesteric LC host. This study provides more evidence for the potential interest of exploring LCs as an anisotropic medium for mediating the aggregation and assembly of cyclopeptides.  相似文献   

15.
Polarizing microscope studies showed that the isotropic solution composed of l-serine hydrochloride decylester and orthophosphoric acid forms micellar cholesteric, nematic and lamellar phases, whereas the solution of the optically inactive ester gives micellar nematic and lamellar phases. The phase transitions were tentatively assigned as the result of two concurrent reactions at which ortho-phosphoserine hydrochloride decylester and orthophosphoric acid monodecylester are produced. Dilution of the optically active and the optically inactive lamellar phases with water gave a cholesteric and a nematic phase, respectively. The nematic director is aligned perpendicular to the glass plate, whereas that of the cholesteric phase is aligned parallel.  相似文献   

16.
The aqueous, lyotropic liquid-crystalline phase behavior of the alpha-helical polypeptide, poly(N(epsilon)-2-[2-(2-methoxyethoxy)ethoxy]acetyl-lysine) (1), has been studied using optical microscopy and X-ray scattering. Solutions of optically pure 1 were found to form cholesteric liquid crystals at volume fractions that decreased with increasing average chain length. At very high volume fractions, the formation of a hexagonal mesophase was observed. The pitch of the cholesteric phase could be varied by a mixture of enantiomeric samples L-1 and D-1, where the pitch increased as the mixture approached equimolar. The cholesteric phases could be untwisted, using either magnetic field or shear flow, into nematic phases, which relaxed into cholesterics upon removal of field or shear. We have found that the phase diagram of 1 in aqueous solution parallels that of poly(gamma-benzyl glutamate) in organic solvents, thus providing a useful system for liquid-crystal applications requiring water as solvent.  相似文献   

17.
《Liquid crystals》1999,26(9):1307-1314
In cholesteric liquid crystals with a positive dielectric anisotropy, the relaxation from the electric field-aligned director configuration to the stable zero field director configuration proceeds via a metastable transient planar director configuration which has a pitch distinct from the equilibrium state. The transition from the transient planar to the equilibrium zerofield state is shown here to occur via a Helfrich-type instability which continuously leads to an in-plane helical structure. The equilibrium planar state is then seen to grow continuously from the in-plane state, leaving behind walls whose length then spontaneously shrinks.  相似文献   

18.
In cholesteric liquid crystals with a positive dielectric anisotropy, the relaxation from the electric field-aligned director configuration to the stable zero field director configuration proceeds via a metastable transient planar director configuration which has a pitch distinct from the equilibrium state. The transition from the transient planar to the equilibrium zerofield state is shown here to occur via a Helfrich-type instability which continuously leads to an in-plane helical structure. The equilibrium planar state is then seen to grow continuously from the in-plane state, leaving behind walls whose length then spontaneously shrinks.  相似文献   

19.
By using a lattice Boltzmann scheme that solves the Beris-Edwards equations of motion describing liquid-crystal hydrodynamics, we study the response of cholesterics to shear and Poiseuille flows. The geometry we focus on is a flow along the direction of the helical axis, which is known to give rise to permeation. For both shear and Poiseuille flow we find that the boundary conditions on the director field are crucial in determining the rheological properties of the liquid crystal. For helices pinned at the boundaries, a small forcing leads to a large viscosity increase whereas a stronger forcing induces a sharp decrease towards the Newtonian value. This shear thinning behavior is in agreement with experiments and previous analytic results. If, on the other hand, the director is free to rotate at the walls, different behaviors are found depending on the symmetry of the steady-state primary flow. Some of the cases considered are compared to a similar imposed flow but with the helix lying perpendicular to the plates, for which no viscosity increase is observed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号