首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
It is demonstrated that the formation of the fissile nucleus prescission configuration with two fission prefragments connected by a neck is possible only with the simultaneous appearance of high values of relative orbital moments [(L)\vec]\vec L of the abovementioned prefragments, independently of their form. It is found that conservation of the fissile nucleus spin when its values are low leads to the formation of high values of prefragment spins [(J)\vec]1\vec J_1, [(J)\vec]2\vec J_2 that are oriented antiparallel to the moment [(L)\vec]\vec L and perpendicular to the fissile nucleus symmetry axis. It is shown that for two deformed fission prefragments, the pumping mechanism of high values of their relative moments [(L)\vec]\vec L and spins [(J)\vec]1\vec J_1, [(J)\vec]2\vec J_2 is due to the combined influence of bending- and wriggling- vibrations, the latter predominating. It is found that the high values of spherical fission prefragments are not related to thermal excitations but is determined by the excitation of the initial high-spin double quasiparticle states, due to the nonadiabatic collective deformation motion of the fissile nucleus in the vicinity of its rupture point.  相似文献   

2.
Using a set of heterogeneous competing systems with intra-system cooperation and inter-system aggression, we show how the coevolution of the system parameters (degree of organization and conditions for aggression) depends on the rate of supply of resources [(S)\dot]\dot{S}. The model consists of a number of units grouped into systems that compete for the resource S; within each system several units can be aggregated into cooperative arrangements whose size is a measure of the degree of organization in the system. Aggression takes place when the systems release inhibitors that impair the performance of other systems. Using a mean field approximation we show that i) even in the case of identical systems there are stable inhomogeneous solutions; ii) a system steadily producing inhibitors needs large perturbations to leave this regime; and iii) aggression may give comparative advantages. A discrete model is used in order to examine how the particular configuration of the units within a system determines its performance in the presence of aggression. We find that full-scale, one sided aggression is only profitable for less-organized systems, and that systems with a mixture of degrees of organization exhibit robustness against aggression. By using a genetic algorithm we find that, in terms of the full-occupation resource supply rate [(S)\dot]F\dot{S}_{F}, the coevolution of the set of systems displays the following behavior: i) for [(S)\dot] < [(S)\dot]F/10\dot{S}< \dot{S}_{F}/10 aggressions are irrelevant and most systems exhibit a high degree of organization; ii) For [(S)\dot]F/10 < [(S)\dot] < [(S)\dot]F/3\dot{S}_{F}/10 < \dot{S} < \dot{S}_{F}/3 aggressions are frequent, making systems with a low degree of organization competitive; iii) for [(S)\dot]F/3 < [(S)\dot] < [(S)\dot]F/2\dot{S}_{F}/3 < \dot{S} < \dot{S}_{F}/2 the systems display global evolutive transitions between periods of calm (few aggressions and high degree of organization) and periods of belligerence (frequent aggressions and low degree of organization); iv) for $ \dot{S} > \dot{S}_{F}/2$ \dot{S} > \dot{S}_{F}/2 the periods of aggression becomes progressively rarer and shorter. Finally, when [(S)\dot]\dot{S} approaches [(S)\dot]F\dot{S}_{F} the selection pressure on the cooperativity and the aggression between systems disappears. This kind of model can be useful to analyse the interplay of the cooperation/competition processes that can be found in some social, economic, ecological and biochemical systems; as an illustration we refer to the competition between drug-selling gangs.  相似文献   

3.
In this paper, we consider generalized holographic and Ricci dark energy models where the energy densities are given as ρ R =3c 2 M pl2 Rf(H 2/R) and ρ h =3c 2 M pl2 H 2 g(R/H 2), respectively; here f(x), g(y) are positive defined functions of the dimensionless variables H 2/R or R/H 2. It is interesting that holographic and Ricci dark energy densities are recovered or recovered interchangeably when the function f(x)=g(y)≡1 or f(x)=Id and g(y)=Id are taken, respectively (for example f(x),g(x)=1−ε(1−x), ε=0or1, respectively). Also, when f(x)≡xg(1/x) is taken, the Ricci and holographic dark energy models are equivalent to a generalized one. When the simple forms f(x)=1−ε(1−x) and g(y)=1−η(1−y) are taken as examples, by using current cosmic observational data, generalized dark energy models are considered. As expected, in these cases, the results show that they are equivalent (ε=1−η=1.312), and Ricci-like dark energy is more favored relative to the holographic one where the Hubble horizon was taken as an IR cut-off. And the suggested combination of holographic and Ricci dark energy components would be 1.312R−0.312H 2, which is 2.312H2+1.312[(H)\dot]2.312H^{2}+1.312\dot{H} in terms of H 2 and [(H)\dot]\dot{H} .  相似文献   

4.
Within the framework of effective mass approximation and variational method, the electronic and impurity states in spherical quantum dots with convex bottom in magnetic field are calculated. Calculations are carried out both for on-center and off-center impurities. The impurity binding energy dependencies on radius, measure of convexity of quantum dot bottom, impurity position and magnetic field induction are obtained for the Ga1-xAlxAs/Ga1-yAlyAs system.  相似文献   

5.
The propagation of electromagnetic waves issued by modulated moving sources of the form j( t,x ) = a( t )e - iw0 t [(x)\dot]0 ( t )d( x - x0 ( t ) )j\left( {t,x} \right) = a\left( t \right)e^{ - i\omega _0 t} \dot x_0 \left( t \right)\delta \left( {x - x_0 \left( t \right)} \right) is considered, where j(t, x) stands for the current density vector, x = (x 1, x 2, x 3) ∈ ℝ3 for the space variables, t ∈ ℝ for time, tx 0(t) ∈ ℝ3 for the vector function defining the motion of the source, ω 0 for the eigenfrequency of the source, a(t) for a narrow-band amplitude, and δ for the standard δ function. Suppose that the media under consideration are dispersive. This means that the electric and magnetic permittivity ɛ(ω), μ(ω) depends on the frequency ω. We obtain a representation of electromagnetic fields in the form of time-frequency oscillating integrals whose phase contains a large parameter λ > 0 characterizing the slowness of the change of the amplitude a(t) and the velocity [(x)\dot]0 ( t )\dot x_0 \left( t \right) and a large distance between positions of the source and the receiver. Applying the two-dimensional stationary phase method to the integrals, we obtain explicit formulas for the electromagnetic field and for the Doppler effects. As an application of our approach, we consider the propagation of electromagnetic waves produced by moving source in a cold nonmagnetized plasma and the Cherenkov radiation in dispersive media.  相似文献   

6.
Spin density matrices of neutron resonance states of a compound nucleus formed in the reaction of capture of a polarized neutron by a non-oriented target nucleus for different directions of neutron polarization vector are constructed within the quantum fission theory. The obtained spin matrices are used to calculate T-odd asymmetries in differential cross sections of ternary nuclear fission with the emission of different third particles. It is demonstrated that the expressions for T-odd asymmetries in the cases of neutron polarization direction [(p)\vec]n\vec p_n along the x and y axes in the laboratory reference frame differ by the values of the unified correlator of the form ( [(p)\vec]n ,[ [(k)\vec]LF ,[(k)\vec]3 ] )\left( {\vec p_n ,\left[ {\vec k_{LF} ,\vec k_3 } \right]} \right) (where [(k)\vec]LF\vec k_{LF} and [(k)\vec]3\vec k_3 are the wave vectors of a light fission fragment and the third particle, respectively), and are transformed into one another if the laboratory reference frame in which [(p)\vec]n\vec p_n is directed along the x axis is rotated to a laboratory reference frame in which [(p)\vec]n\vec p_n is directed along the y axis. It is shown that T-odd TRI and ROT asymmetries are associated, respectively, with the odd and even components of the amplitudes of the angular distribution of third particles perturbed by the collective rotation of a polarized fissile nucleus, and each of these amplitudes can be considerably amplified (or suppressed) relative to one another due to the interference from fission amplitudes of pairs of neutron resonances sJ s and sJ s′ .  相似文献   

7.
A Coulomb-modified matrix of scattering amplitudes (an [(F)\tilde]\tilde F matrix) is considered for the case of two coupled channels of elastic scattering of charged particles with different orbital angular momenta (l 1 and l 2 = l 1 + 2). Matrix elements of the [(F)\tilde]\tilde F matrix are expressed in terms of the matrix elements of a [(K)\tilde] - 1\tilde K^{ - 1} matrix inverse to a modified reaction K matrix. The elements of the [(K)\tilde] - 1\tilde K^{ - 1} matrix are written as expansions that are generalizations of single-channel effective range expansion with allowance for the Coulomb interaction. If a system of colliding particles involves a bound state, the analytic continuation of these expansions into the region of negative energies makes it possible to obtain both the position of the pole corresponding to the bound state and the scattering amplitude residues in this pole, in terms of which the corresponding vertex constants and asymptotic normalization coefficients are expressed.  相似文献   

8.
Quantum electronic states in a dot (antidot) array in the presence of a dc magnetic field are studied. A new method of numerical calculation of the electron spectrum and wave functions in a two-dimensional periodic potential and perpendicular magnetic field is proposed. The magnetic-subband energies, density of electron states, and electron density |ψ(x,y)|2, as well as the amplitude of the potential, and lattice period and degree of anisotropy for different magnetic fields have been found. The calculations were performed for quantum dots in the In0.2Ga0.8As-GaAs and GaAs-Al0.3Ga0,7As systems. The rearrangement of the spectrum with variation of magnetic field and with transition from the tight-binding to weak-binding approximation is studied (ω c is the cyclotron frequency, and V 0 is the periodic-potential amplitude). The calculations show that the two-dimensional lattices epitaxially grown presently on semiconductor surfaces permit observation of quantum effects associated with rearrangement of the spectrum (electron transport and optical absorption) in magnetic fields H⩽1 MG. Fiz. Tverd. Tela (St. Petersburg) 40, 1134–1139 (June 1998)  相似文献   

9.
Using Brownian hydrodynamic simulation techniques, we study single polymers in shear. We investigate the effects of hydrodynamic interactions, excluded volume, chain extensibility, chain length and semiflexibility. The well-known stretching behavior with increasing shear rate [(g)\dot] \dot{{\gamma}} is only observed for low shear [(g)\dot] \dot{{\gamma}} < [(g)\dot]max \dot{{\gamma}}^{{\max}}_{} , where [(g)\dot]max \dot{{\gamma}}^{{\max}}_{} is the shear rate at maximum polymer extension. For intermediate shear rates [(g)\dot]max \dot{{\gamma}}^{{\max}}_{} < [(g)\dot] \dot{{\gamma}} < [(g)\dot]min \dot{{\gamma}}^{{\min}}_{} the radius of gyration decreases with increasing shear with minimum chain extension at [(g)\dot]min \dot{{\gamma}}^{{\min}}_{} . For even higher shear [(g)\dot]min \dot{{\gamma}}^{{\min}}_{} < [(g)\dot] \dot{{\gamma}} the chain exhibits again shear stretching. This non-monotonic stretching behavior is obtained in the presence of excluded-volume and hydrodynamic interactions for sufficiently long and inextensible flexible polymers, while it is completely absent for Gaussian extensible chains. We establish the heuristic scaling laws [(g)\dot]max \dot{{\gamma}}^{{\max}}_{} ∼ N -1.4 and [(g)\dot]min \dot{{\gamma}}^{{\min}}_{} ∼ N 0.7 as a function of chain length N , which implies that the regime of shear-induced chain compression widens with increasing chain length. These scaling laws also imply that the chain response at high shear rates is not a universal function of the Weissenberg number Wi = [(g)\dot] \dot{{\gamma}} t \tau anymore, where t \tau is the equilibrium relaxation time. For semiflexible polymers a similar non-monotonic stretching response is obtained. By extrapolating the simulation results to lengths corresponding to experimentally studied DNA molecules, we find that the shear rate [(g)\dot]max \dot{{\gamma}}^{{\max}}_{} to reach the compression regime is experimentally realizable.  相似文献   

10.
We have presented the role of the Coulomb interaction (U) and the magnetic field [(B)\vec]\vec{B} on the ground state properties of the quasi-one dimensional graphite ribbon structures at half-filling. Mean field Hartree-Fock Approximation is used to study the systems. To understand the boundary effects in graphite structures, we have compared the results of these systems with those of the square lattice ribbon structures. Studying the density of states, the Drude weight and the charge gap, we have drawn the UB phase diagrams for the zigzag and the armchair graphite ribbons.  相似文献   

11.
It is shown that the Lie and the Noether symmetries of the equations of motion of a dynamical system whose equations of motion in a Riemannian space are of the form [(x)\ddot]i+Gjki[(x)\dot]j[(x)\dot] k+f(xi)=0{\ddot{x}^{i}+\Gamma_{jk}^{i}\dot{x}^{j}\dot{x} ^{k}+f(x^{i})=0} where f(x i ) is an arbitrary function of its argument, are generated from the Lie algebra of special projective collineations and the homothetic algebra of the space respectively. Therefore the computation of Lie and Noether symmetries of a given dynamical system in these cases is reduced to the problem of computation of the special projective algebra of the space. It is noted that the Lie and Noether symmetry vectors are common to all dynamical systems moving in the same background space. The selection of the vectors which are Lie/Noether symmetries for a given dynamical system is done by means of a set of differential conditions involving the vectors and the potential function defining the dynamical system. The general results are applied to a number of different applications concerning (a) The motion in Euclidean space under the action of a general central potential (b) The motion in a space of constant curvature (c) The determination of the Lie and the Noether symmetries of class A Bianchi type hypersurface orthogonal spacetimes filled with a scalar field minimally coupled to gravity (d) The analytic computation of the Bianchi I metric when the scalar field has an exponential potential.  相似文献   

12.
Among various phenomenological Λ models, a time-dependent model [(L)\dot] ~ H3\dot{\Lambda}\sim H^{3} is selected here to investigate the Λ-CDM cosmology. The model can follow from dynamics, underlying the origin of Λ. Using this model the expressions for the time-dependent equation of state parameter ω and other physical parameters are derived. It is shown that in H 3 model accelerated expansion of the Universe takes place at negative energy density, but with a positive pressure. It has also been possible to obtain the change of sign of the deceleration parameter q during cosmic evolution.  相似文献   

13.
Many amorphous glassy materials exhibit complex spatio-temporal mechanical response and rheology, characterized by an intermittent stress strain response and a fluctuating velocity profile. Under quasistatic and athermal deformation protocols this heterogeneous plastic flow was shown to be composed of plastic events of various sizes, ranging from local quadrupolar plastic rearrangements to system spanning shear bands. In this paper, through numerical study of a 2D Lennard-Jones amorphous solid, we generalize the study of the heterogeneous dynamics of glassy materials to the finite shear rate ( [(g)\dot] \dot{{\gamma}} 1 \neq 0 and temperature case (T 1 \neq 0 . In practice, we choose an effectively athermal limit (T ∼ 0 and focus on the influence of shear rate on the rheology of the glass. In line with previous works we find that the model Lennard-Jones glass follows the rheological behavior of a yield stress fluid with a Herschel-Bulkley response of the form, s \sigma = sY \sigma_{{Y}}^{} + c 1 [(g)\dot]b \dot{{\gamma}}^{{\beta}}_{} . The global mechanical response obtained through the use of Molecular Dynamics is shown to converge in the limit [(g)\dot] \dot{{\gamma}} ? \rightarrow 0 to the quasistatic limit obtained with an energy minimization protocol. The detailed analysis of the plastic deformation at different shear rates shows that the glass follows different flow regimes. At sufficiently low shear rates the mechanical response reaches a shear-rate-independent regime that exhibits all the characteristics of the quasistatic response (finite-size effects, cascades of plastic rearrangements, yield stress, ...). At intermediate shear rates the rheological properties are determined by the externally applied shear rate and the response deviates from the quasistatic limit. Finally at higher shear the system reaches a shear-rate-independent homogeneous regime. The existence of these three regimes is also confirmed by the detailed analysis of the atomic motion. The computation of the four-point correlation function shows that the transition from the shear-rate-dominated to the quasistatic regime is accompanied by the growth of a dynamical cooperativity length scale x \xi that is shown to diverge with shear rate as x \xi μ \propto [(g)\dot]-n \dot{{\gamma}}^{{-\nu}}_{} , with n \nu ∼ 0.2 -0.3. This scaling is compared with the prediction of a simple model that assumes the diffusive propagation of plastic events.  相似文献   

14.
A technique for the determination of the strain-rate sensitivity of hardness during dynamic nanoindentation is proposed. The strain-rate sensitivities of the dynamic hardnesses of a wide class of materials (fcc metals, carbon steels, bulk amorphous metallic alloys, ionic and covalent crystals, polymers, and ceramics) are determined. The variation of these strain-rate sensitivities with the relative-strain rate (in the [(e)\dot]\dot \varepsilon range from 3 × 10−3 to 5 × 103 s−1) and the indentation depth (in the range from 30 nm to 2μm) is studied.  相似文献   

15.
The galvanomagnetic properties of single crystals of the semimagnetic semiconductors Hg1−x MnxTe1−y Sey with 0.01<y<0.1 and x=0.05 and 0.14 in the temperature range 4.2–300 K are investigated. The features of the temperature dependence of the Hall coefficient R H and the complicated behavior of R H in a magnetic field are attributed quantitatively to the existence of three groups of current carriers, viz., electrons and two types of holes, for which the temperature dependences of the densities and mobilities are obtained. A transition from p-type to n-type conductivity is observed as the Se content is increased, and the negative magnetoresistance simultaneously gives way to positive magnetoresistance. Zh. éksp. Teor. Fiz. 112, 1809–1815 (November 1997)  相似文献   

16.
In the present paper, the magnetic properties of Tb1–xSmx alloys with different samarium contents are investigated along the <11 [`2]\overline 2 0 > (b), < 10 [`1]\overline 1 0 \gt; (a), and <0001> (c) crystallographic directions in magnetic fields up to 50 kOe in the temperature interval 4.2–400 K. It is demonstrated that small additions of the light rare-earth samarium metal to the heavy rare-earth terbium metal increase the specific magnetization and the effective magnetic moments.  相似文献   

17.
A series of Sm-CoMn substituted hexagonal ferrites with chemical composition of Sr0.85-xCa0.15SmxFe12-y(Co0.5Mn0.5)yO19 (0.00?≤?x?≤?0.60, (0.00?≤?y?≤?0.50) were synthesized by the solid-state reaction method. Microstructure and magnetic properties of the hexaferrites have been investigated by the X-ray diffraction, field emission scanning electron microscopy and a permanent magnetic measuring system. A single magnetoplumbite phase is exhibited in the hexaferrites with the substitutiom of Sm (0.00?≤?x?≤?0.12) and CoMn (0.00?≤?y?≤?0.10) contents. For the hexaferrites containing Sm (x?≥?0.24) and CoMn (y?≥?0.20), impurity phases are observed in the structure. The FESEM micrographs exhibit that the hexaferrites with different Sm-CoMn contents have formed hexagonal structures and the grain size of the hexaferrites remains unchanged with increasing Sm-CoMn content. The remanence (Br), Hk/Hcj ratios, and maximum energy product [(BH)max] decrease with increasing Sm-CoMn content (0.00?≤?x?≤?0.60, (0.00?≤?y?≤?0.50). Instrinsic coercivity (Hcj) and magnetic induction coercivity (Hcb) increase with increasing Sm-CoMn content (0.00?≤?x?≤?0.12, 0.00?≤?y?≤?0.10), and then decrease with increasing Sm-CoMn content (0.12?≤?x?≤?0.36, 0.10?≤?y?≤?0.30), while for the hexaferrites with Sm (x?≥?0.36) and CoMn (y?≥?0.30), with increasing Sm-CoMn content, Hcj increases and Hcb decreases.  相似文献   

18.
A simplified model of the Jahn-Teller band effect in a conducting ferromagnet with two degenerate subbands with the peak density of states of itinerant electrons is considered. It is found that the martensite transition temperature in a narrow-band conductor as a function of the position of the Fermi level near the peak of the energy density of states varies nonmonotonically in the narrow spin electron subband. The magnetic field dependence of the martensite-austenite structural phase transition temperature in the ferromagnet is analyzed. The developed theory and calculated data for the electron density of states in Ni2MnGa are used as the basis for estimating the variation of the martensite transition temperature with the magnetic field (?T m /?H), which demonstrates a satisfactory agreement with experimental data for the Heusler alloy Ni2+x Mn1?x FeyGa1?y .  相似文献   

19.
Analytical and numerical calculations show that a putative temporal variation of the speed of light c, with the meaning of space-time structure constant c ST, assumed to be linear over timescales of about one century, would induce a secular precession of the longitude of the pericenter v{\varpi} of a test particle orbiting a spherically symmetric body. By comparing such a predicted effect to the corrections D[(v)\dot]{\Delta\dot\varpi} to the usual Newtonian/Einsteinian perihelion precessions of the inner planets of the Solar System, recently estimated by E.V. Pitjeva by fitting about one century of modern astronomical observations with the standard classical/relativistic dynamical force models of the EPM epehemerides, we obtained [(c)\dot]/c = (0.5±2)×10-7 yr-1{\dot c/c =(0.5\pm 2)\times 10^{-7} {\rm yr}^{-1}} . Moreover, the possibility that [(c)\dot]/c 1 0{\dot c/c\neq 0} over the last century is ruled out at 3−12σ level by taking the ratios of the perihelia for different pairs of planets. Our results are independent of any measurement of the variations of other fundamental constants which may be explained by a variation of c itself (with the meaning of electromagnetic constant c EM). It will be important to repeat such tests if and when other teams of astronomers will estimate their own corrections to the standard Newtonian/Einsteinian planetary perihelion precessions with different ephemerides.  相似文献   

20.
Nuclear magnetic resonance spectroscopy has had extensive applications for the characterization of numerous metal-hydrogen systems. Although the greatest emphasis of proton NMR has been to evaluate diffusion behavior, increasing attention has been addressed upon the correlation of proton Knight shifts and the conduction electron contributions to proton spin-lattice relaxation times to the electronic structure properties of the hydride. The general principles of NMR, that pertain to the usual situations for most transition metal hydrides, will be briefly reviewed. Several specific examples from some recent research will be discussed in greater detail. In particular, the roles of host crystal structure and hydrogen site occupancy to hydrogen diffusion behavior are examined for the Ti1-y Cu y H x and Zr1-y Pd y H x systems. The proton hyperfine parameters in TiH x and ZrH x , as well as several related ternary hydrides, are used to qualitatively assess the character of the Fermi level electronic states. The relationship between the tetragonal distortions of the Ti and Zr dihydrides and a solid-state Jahn-Teller mechanism will also be examined. Mound is operated by the Monsanto Research Corporation for the U.S. Department of Energy under Contract No. DE-AC04-76-DP00053.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号