首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spectroscopic properties and surface-enhanced spectra of Langmuir-Blodgett (LB) films of methacrylic homopolymer (HPDR13) are presented. It is shown that LB film displays strong fluorescence attributed to the spatial restrictions imposed by its structure. The emission is observed in conjunction with photoisomerization, a process clearly demonstrated by the formation of surface-relief gratings in the LB film [C.R. Mendon?a et al., Macromolecules 32 (1999) 1493]. Surface-enhanced Raman scattering (SERS), Surface-enhanced resonance Raman scattering (SERRS) and surface-enhanced fluorescence (SEF) were observed for LB films of HPDR13 deposited onto silver island films. SERS measurements were also carried out on a sample fabricated with one monolayer LB film deposited onto silver islands followed by one overlayer of silver (LB sandwiched between two layers of silver islands). The polymer interacts very weakly with the metal surface (physisorption), and the enhancement effect is determined by the local electric field enhancement. The strong SERS and SERRS signals were suitable for micro-Raman imaging. Line, area mapping and global images of the LB monolayer on silver island are reported. The transfer ratio in the fabrication of the LB suggests a homogeneous coating of the silver islands, thereby the chemical images show the variation of the SERS intensity due to surface enhancement.  相似文献   

2.
A commercially available fluorimeter with a white light source is used to detect surface enhanced resonance Raman scattering (SERRS). This approach allows facile tunability of the excitation source for SERRS.  相似文献   

3.
Vibrational fundamentals, overtones and combination bands of the perylene chromophore, in the N-hexyl-3, 4:9,10-perylenetetracarboxylic diimide (HPTCNH) and other perylene tetracarboxylic derivatives, have been observed using surface enhanced resonance Raman scattering (SERRS) of Langmuir—Blodgett (LB) monolayers on Ag island films. Typical vibrational progressions due to the Franck—Condon (A-term) were seen. The results showed that the mechanism of the RRS effect was not altered by the metal surface, although the RRS signal was enhanced by four orders of magnitude. Polarization properties of the SERRS signal were studied for LB monolayers on a series of SERS active substrates. A frequency dependence of the depolarization ratios was observed.  相似文献   

4.
Faulds K  Smith WE  Graham D 《The Analyst》2005,130(8):1125-1131
This Education article outlines the different ways in which surface enhanced resonance Raman scattering (SERRS) can be used for the detection of DNA. The use of various different SERRS detection strategies that have allowed both sensitive and selective detection to be obtained is covered. Detection of DNA by SERRS involves the use of a dye with the DNA, whether as an intercalator or by direct covalent attachment. This generates strong SERRS signals that indicate the presence of the specific DNA sequence. The SERRS detection of DNA in different molecular biological assays is also discussed.  相似文献   

5.
A surface enhanced Raman scattering (SERS) spectrum of 0.5 M NH3 in 4.0 M KCl has been observed on a silver electrode. An approximate enhancement factor of 3 × 105 is calculated, and additional evidence for the enhanced nature of the spectrum is provided by the observation that totally symmetric vibrations are depolarized and by the strong potential dependence of the intensity of surface lines. Assignments have been given to the SERS lines with the low-frequency lines assigned to a AgCl and AgN stretch. The positive shift of the maximum of the intensity versus voltage curve with a lower laser excitation frequency is taken as evidence for the occurrence of a charge transfer process from ammonia to the silver electrode. The fact that the SERS spectrum of NH3 on Ag can only be observed at large electrolyte concentrations is attributed to the breaking of hydrogen bonding at the electrode-solution interface.  相似文献   

6.
A sandwich structure consisting of Ag nanoparticles (NPs), p-aminothiophenol (p-ATP) self-assembled monolayers (SAMs), and Ag NPs was fabricated on glass and characterized by surface enhanced Raman scattering (SERS). The SERS spectrum of a p-ATP SAM in such sandwich structure shows that the electromagnetic enhancement is greater than that on Ag NPs assembled on glass. The obtained enhancement factors (EF) on solely one sandwich structure were as large as 6.0 +/- 0.62 x 10(4) and 1.2 +/- 0.62 x 10(7) for the 7a and 3b(b(2)) vibration modes, respectively. The large enhancement effect of p-ATP SAMs is likely a result of plasmon coupling between the two layers of Ag NP (localized surface plasmon) resonance, creating a large localized electromagnetic field at their interface, where p-ATP resides. Moreover, the fact that large EF values (approximately 1.9 +/- 0.7 x 10(4) and 9.4 +/- 0.7 x 10(6) for the 7a- and b(2)-type vibration modes, respectively) were also obtained on a single sandwich structure of Au NPsp-ATP SAMsAg NPs in the visible demonstrates that the electromagnetic coupling does not exist only between Ag NPs but also between Au and Ag NPs. The lower EF values on Au-to-Ag NPs compared to those on Ag-to-Ag NPs demonstrate that the Au-to-Ag coupling must be less effective than the Ag-to-Ag coupling for the induction of SERS in the visible.  相似文献   

7.
Dougan JA  Faulds K 《The Analyst》2012,137(3):545-554
The multiplexed detection of biological analytes from complex mixtures is of crucial importance for the future of intelligent management and detection of disease. This review focuses on recent advances in the use of surface enhanced Raman scattering (SERS) spectroscopy as an analytical technique that can deliver multiplexed detection for a variety of biological target in increasingly complex media. The use of SERS has developed from the multipelxed detection of custom dye molecules to biomolecules such as DNA and proteins. Recent work has also shown the capability of SERS multiplexing for in vivo as well as in vitro applications.  相似文献   

8.
Rhodium phthalocyanine (RhPc) was synthesized and ultra thin Langmuir-Blodgett (LB) films of RhPc were successfully fabricated. The LB film characterization was carried out using both UV-vis absorption spectra and Raman scattering. The Raman spectroscopy was carried out using 633 and 780 nm laser lines. LB films were deposited onto Ag nanoparticles to achieve the surface-enhanced pre-resonance Raman scattering (pre-SERRS) and surface-enhanced Raman scattering (SERS) for both laser lines, respectively, which allowed the characterization of the RhPc ultra thin films. The morphology of the LB RhPc neat film is extracted from micro-Raman imaging.  相似文献   

9.
Faulds K  Jarvis R  Smith WE  Graham D  Goodacre R 《The Analyst》2008,133(11):1505-1512
The labelling of target biomolecules followed by detection using some form of optical spectroscopy has become common practice to aid in their detection. This approach has allowed the field of bioanalysis to dramatically expand; however, most methods suffer from the lack of the ability to discriminate between the components of a complex mixture. Currently, fluorescence spectroscopy is the method of choice but its ability to multiplex is greatly hampered by the broad overlapping spectra which are obtained. Surface enhanced resonance Raman scattering (SERRS) holds many advantages over fluorescence both in sensitivity and, more importantly here, in its ability to identify components in a mixture without separation due to the sharp fingerprint spectra obtained. Here the first multiplexed simultaneous detection of six different DNA sequences, corresponding to different strains of the Escherichia coli bacterium, each labelled with a different commercially available dye label (ROX, HEX, FAM, TET, Cy3, or TAMRA) is reported. This was achieved with the aid of multivariate analysis, also known as chemometrics, which can involve the application of a wide range of statistical and data analysis methods. In this study, both exploratory discriminant analysis and supervised learning, by partial least squares (PLS) regression, were used and the ability to discriminate whether a particular labelled oligonucleotide was present or absent in a mixture was achieved using PLS with very high sensitivity (0.98-1), specificity (0.98-1), accuracy (range 0.99-1), and precision (0.98-1).  相似文献   

10.
Raman optical activity (ROA) directly monitors the stereochemistry of chiral molecules and is now an incisive probe of biomolecular structure. ROA spectra contain a wealth of information on tertiary folding, secondary structure and even the orientation of individual residues in proteins and nucleic acids. Extension of ROA to an even wider range of samples could be facilitated by coupling its structural sensitivity to the low-concentration sensitivity provided by plasmon resonance enhancement. This leads to the new technique of surface enhanced ROA, or SEROA, which is complementary to both SERS and ROA. In this tutorial review, we present a survey of theoretical and experimental work undertaken to develop SEROA and discuss these efforts in the context of the ROA technique, and, based on the authors' work, outline possible future directions of research for this novel chiroptical spectroscopy.  相似文献   

11.
Visible and near infrared extinction spectra of gold nanorod regular arrays exhibit several bands assigned to high multipolar order plasmon resonances. These up to ninth order multipolar resonances generate surface enhanced Raman scattering spectra with typically 5 x 10(4) enhancement which is of similar magnitude as those obtained for dipolar excitations.  相似文献   

12.
The unique ability to obtain molecular recognition of an analyte at very low concentrations in situ in aqueous environments using surface enhanced Raman scattering (SERS) and surface enhanced resonance Raman scattering (SERRS) detection makes these spectroscopies of considerable interest. Improved understanding of the effect coupled to improvements in practical techniques make the use of SERS/SERRS much simpler than has been the case in the past. This article is designed as a tutorial review targeted at aiding in the development of practical applications.  相似文献   

13.
Surface enhanced Raman scattering based on silver dendrites substrate   总被引:1,自引:0,他引:1  
A simple method of the reduction of AgNO3 by copper foil in aqueous medium was used to prepare silver dendrites, which can be used as a novel good reproducible surface enhanced Raman scattering (SERS) active substrate. The SERS spectra of 4-pyridinethiol on this novel substrate reflected the different SERS activities on the minuteness and strong Ag dendrites. The electromagnetic coupling enhancement and chemical enhancement mechanisms are used to explain the SERS effect.  相似文献   

14.
Silver nanoparticles can be used to provide excellent surface enhanced resonance Raman scattering. Control of the surface chemistry and the use of appropriate protocols enables effective sensing of biomolecules.  相似文献   

15.
In this tutorial review, the underlying principles of vibrational pumping in surface enhanced Raman scattering (SERS) are summarized and explained within the framework of their historical development. Some state-of-the-art results in the field are also presented, with the aim of giving an overview on what has been established at this stage, as well as hinting at areas where future developments might take place.  相似文献   

16.
17.
The enhancement of resonance Raman scattering by coupling to the plasmon resonance of a metal nanoparticle is developed by treating the molecule-metal interaction as transition dipole coupling between the molecular electronic transition and the much stronger optical transition of the nanoparticle. A density matrix treatment accounts for coupling of both transitions to the electromagnetic field, near-resonant energy transfer between the molecule-excited and nanoparticle-excited states, and dephasing processes. This fully quantum mechanical approach reproduces the interference effects observed in extinction spectra of J-aggregated dyes adsorbed to metal nanoparticles and makes testable predictions for surface-enhanced resonance Raman excitation profiles.  相似文献   

18.
Calculations based on the Mie theory are performed to determine the locally enhanced electric fields due to whispering-gallery mode resonances for dielectric microspheres, with emphasis on electromagnetic "hot spots" that are located along the wavevector direction on the surface of the sphere. The local electric field enhancement associated with these hot spots is used to determine the surface enhanced Raman scattering enhancement factors for a molecule, here treated as a classical dipole, located near the surface of the sphere. Both incident and Raman emission enhancements are calculated accurately using an extension of the Mie theory that includes interaction of the Raman dipole field with the sphere. The enhancement factors are calculated for dielectric spheres in vacuum with a refractive index of 1.9 and radii of 5, 10, and 20 microm and for wavelengths that span the visible spectrum. Maximum Raman scattering enhancement factors on the order of 10(3)-10(4) are found at locations slightly off the propagation axis when the incident excitation but not the Stokes-shifted radiation is coincident with a whispering-gallery mode resonance. The enhancement factors are found to vary inversely with the resonance width, and this determines the influence of the mode number and order on the results. Additional calculations are performed for the case where the Stokes-shifted radiation is also on-resonance and Raman enhancement factors as large as 10(8) are found. These enhancement factors are typically a factor of 10(2) smaller than would be obtained from /E/4 enhancement estimates, as enhancement of the Raman dipole emission is significantly reduced compared to the local field enhancement for micron size particles or larger. Conditions under which single-molecule or few-molecule measurements are feasible are identified.  相似文献   

19.
Traditionally, aluminum and anodized aluminum oxide films (AAO) are not the platforms of choice for surface-enhanced raman scattering (SERS) experiments despite of the aluminum’s large negative permittivity value. Here we examine the usefulness of aluminum and nanoporous alumina platforms for detecting soft biospecies ranging from bacterial spores to protein markers. We used these flat platforms to examine SERS of a model protein (cytochrome c from bovine heart tissue) and bacterial cells (spores of Bacillus subtilis ATCC13933 used as Anthrax simulant) and demonstrated clear Raman amplification.  相似文献   

20.
By solution-based method, three kinds of silver colloids, self-assembled nanowires, triangular nanoplates and quasispherical nanoparticles, have been synthesized. TEM studies revealed that they exposed different crystal planes, such as {111} crystal planes to triangular nanoplates, mainly {100} and {111} planes to self-assembly nanowires. Hereby, do the distinct shapes and crystal planes have an impact on the surface enhanced Raman scattering (SERS)? The great differences of the SERS spectra of rhodamine B at these Ag colloids confirmed that the shapes and crystal planes of silver have great effect on Raman enhancement, especially the crystal planes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号