首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 2-electron reduction of the unsaturated Pd3(dppm)3(CO)2+ cluster ([Pd3]2+) affords the highly reactive neutral cluster [Pd3]0, which reacts with nitrosobenzene (PhNO) yielding the organic azoxybenzene product (PhN(O)NPh) via the formation of “triplet” nitrene “PhN”. The formation of [Pd33-O)] as a possible (relatively unstable) intermediate is also postulated based on MALDI-TOF findings, but not formally demonstrated. Concurrently, no reaction between [Pd3]0 and OPPh3 occurs. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users. This paper is dedicated to Professor Dieter Fenske.  相似文献   

2.
The recently discovered and characterized [Pd4(dppm)4(H)]2+ cluster catalyst ( 1 ; dppm = Ph2PCH2PPh2), slowly evolves in the presence of the reducing tetraphenylborate anion, to generate a new diamagnetic cluster [Pd4(dppm)4(H)]+ ( 2 ). The evolution of this starting material 1 , has been monitored using NMR (1H and 31P), UV‐vis and ESR spectroscopy. This new 56‐electron Pd cluster has been characterized from X‐ray crystallography, and consists of a cyclic species exhibiting an approximate puckered square structure. The Pd2 bond distances are 2.7367(10) and 2.7495(11)Å and indicate the presence of weak bonding. The diagonal Pd···Pd separations are 3.646(10) and 3.590(10)Å indicating that the square is relatively symmetric. Such a structure is unprecedented for “Pdx(dppm)x” species. Although not formally observed from the X‐ray data, the hydride is assumed to be fluxional as found in 1 . The cyclic voltammogram for 2 exhibits an irreversible reduction wave at —1.65V vs SCE which is greater than that found for 1 , and corroborates the lower oxidation state for Pd (+1/2). The Pd‐H bonding scheme and MO symmetry for a model cluster where the hydride has been placed at the center of the Pd4 frame, have been addressed qualitatively using the EHMO model. These calculations demonstrate clearly that the Pd‐H bonding is strong.  相似文献   

3.
This paper presents an overview of the optical, photophysical, and photochemical properties including UV-visible and luminescence spectra in solution at 298 and 77 K, along with electrochemical, and catalytic behavior under reduction conditions (for both thermally and electrochemically assisted systems) of the tri- and tetranuclear Pd3(dppm)3(CO)2+ and Pd4(dppm)4(H)2+ 2 clusters (dppm=bis(diphenylphosphino)methane). This review is also complemented with relevant information about their syntheses, molecular and electronic structures supported from computer modeling, EHMO and DFT calculations, and their host-guest behavior with anions and neutral molecules, in relation with their observed reactivity.  相似文献   

4.

Abstract  

The reactivity of the trinuclear palladium cluster [Pd3(dppm)3(CO)] n+ (dppm = bis(diphenylphosphinomethane); n = 2, 1) towards F was investigated by electrochemical and spectroscopic methods. The reaction depends on the charge of the cluster. The chemical reduction of the cluster dication is observed in the presence of F generating the paramagnetic monocationic cluster. Spin-trapping experiments with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) provided evidence for the radical F as an intermediate. In a similar manner to the dication, the monocationic cluster [Pd3(dppm)3(CO)]+ is also reduced, but in a slower process, by the F ion to produce [Pd3(dppm)3(CO)]0. Additionally, the alkyne cluster adducts [Pd3(dppm)3(CO)(RCCR)] n+ (n = 2, 1; R = CO2Me) are also reactive towards F. Particularly, the dication adduct leads to a metastable fluoride adduct [Pd3(dppm)3(CO)(RCCR)(F)]+. The electroreductive behavior of this adduct involves electron-transfer steps and F exchange equilibriums, for which digital simulation enables the extraction of the thermodynamic parameters (standard potentials and equilibrium constants). Concurrently, the monocation adduct [Pd3(dppm)3(CO)(RCCR)]+ with F, leads to a disproponation generating 0.5 equiv. of [Pd3(dppm)3(CO)(RCCR)(F)]+ and 0.5 equiv. of [Pd3(dppm)3(CO)(RCCR)]0. The former slowly evolves to [Pd3(dppm)3(RCCR)(F)]+, which was described by X-ray diffraction method.  相似文献   

5.
The cyanate-bridged cyclopalladated compound [Pd(C2,N-dmba)(μ-NCO)]2 (dmba=N,N-dimethylbenzylamine) reacts in acetone with pyrazole (pz), 3,5-dimethylpyrazole (dmpz), imidazole (imz) and 2-methylimidazole (mimz) to give [Pd2(C2,N-dmba)2(μ-NCO)(μ-pz)] (1), [Pd2(C2,N-dmba)2(μ-NCO)(μ-dmpz)] (2), [Pd(C2,N-dmba)(NCO)(imz)] (3) and [Pd(C2,N-dmba)(NCO)(mimz)] (4), respectively. The compounds were characterized by elemental analysis, IR spectroscopy and TG. The thermal decomposition of the compounds occurs in three consecutive steps and the final decomposition products were identified as Pd(0) by X-ray powder diffraction. The thermal stability order of the complexes is 2>3>1>4.  相似文献   

6.
The reaction of Os3(μ-Cl)2(CO)10 (1) with Ph2PCH2PPh2 (dppm) in a toluene solution at 65°C results in novel osmium complexes [Os3(μ-Cl)2(CO)9]2(dppm) (2) and [Os3(μ-Cl)2(CO)8]2(dppm)2 (3). Compounds 2 and 3 were characterized by1H and31P NMR, and IR spectroscopy and their structures were established by X-ray analysis. In both compounds, dppm is a bridging ligand between the two cluster units. Molecule3 can be considered as an unusual 12-membered macrocycle containing C, P, Cl, and Os atoms in the ring. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1844–1851, September, 1998.  相似文献   

7.
Complexes [Pd(bt)En]ClO4, [Pd(bt)(μ-OOCCH3)]2, [(PdEn)2(μ-dbt)](CH3COO)2, and [Pd2(μ-dbt)· (μ-OOCCH3)2]2 (bt and dbt2− are the mono- and bisdeprotonated forms of 2-phenylbenzothiazole and 1,4-bis-(benzthiazol-2-yl)benzene, En is ethylenediamine) are characterized by 1H NMR, electron absorption spectroscopy, and voltammetry. The upfield shift of the signal of protons of heterocyclic ligands in complexes with acetate ligands is assigned to anisotropic effect of the ring current of the two fragments {Pd(bt)} and {Pd(dbt)} in the complexes. The red shift of the optical transition of the metal-ligand charge transfer as well as the anodic shift of the ligand-centered reduction of [(PdEn)2(μ-dbt)](CH3COO)2 relative to [Pd(bt)En]ClO4 is due to the decrease in the LUMO energy of the complexes. The cathodic shift of the oxidation potential and the long wavelength absorption in complexes with acetate ligands is assigned to variation in the HOMO nature due to the metal-metal bond formation.  相似文献   

8.
A series of palladium(II) thiosaccharinates with triphenylphosphane (PPh3), bis(diphenylphosphanyl)methane (dppm), and bis(diphenylphosphanyl)ethane (dppe) have been prepared and characterized. From mixtures of thiosaccharin, Htsac, and palladium(II) acetylacetonate, Pd(acac)2, the palladium(II) thiosaccharinate, Pd(tsac)2 (tsac: thiosaccharinate anion) ( 1 ) was prepared. The reaction of 1 with PPh3, dppm, and dppe leads to the mononuclear species Pd(tsac)2(PPh3)2 · MeCN ( 2 ), [Pd(tsac)2(dppm)] ( 3 ), Pd(tsac)2(dppm)2 ( 4 ), and [Pd(tsac)2(dppe)] · MeCN ( 5 ). Compounds 2 , 4 , and 5 have been prepared also by the reaction of Pd(acac)2 with the corresponding phosphane and Htsac. All the new complexes have been characterized by chemical analysis, UV/Vis, IR, and Raman spectroscopy. Some of them have been also characterized by NMR spectroscopy. The crystalline structures of complexes 3 , and 5 have been studied by X‐ray diffraction techniques. Complex 3 crystallizes in the monoclinic space group P21/n with a = 16.3537(2), b = 13.3981(3), c = 35.2277(7) Å, β = 91.284(1)°, and Z = 8 molecules per unit cell, and complex 5 in P21/n with a = 10.6445(8), b = 26.412(3), c = 15.781(2) Å, β = 107.996(7)°, and Z = 4. In compounds 3 and 5 , the palladium ions are in a distorted square planar environment. They are closely related, having two sulfur atoms of two thiosaccharinate anions, and two phosphorus atoms of one molecule of dppm or dppe, respectively, bonded to the PdII atom. The molecular structure of complex 3 is the first reported for a mononuclear PdII‐dppm‐thionate system.  相似文献   

9.
The PdI-PdI bonded complex [Pd2(CH3CN)6][SbF6]2 is catalytically active towards Suzuki cross-coupling reactions of aryl bromides or chlorides with various arylboronic acids under mild conditions giving good to excellent yields. Its performance is enhanced by the introduction of stoichiometric or limited phosphines. The effects of different ligands, metal oxidation states [Pd(II), Pd(I) Pd(0)], bases and solvents have been examined.  相似文献   

10.
The reaction of Rh4(CO)12 with Pd(PBu t 3)2 yielded the high nuclearity bimetallic hexarhodium-tripalladium cluster complex Rh6(CO)16[Pd(PBu t 3)]3, 10, in 11% yield. Compound 10 was converted to the hexarhodium-tetrapalladium cluster Rh6(CO)16[Pd(PBu t 3)]4, 11, in 62% yield by reaction with an additional quantity of Pd(PBu t 3)2. Both compounds were characterized crystallographically. Structurally, both compounds consist of an octahedral cluster of six rhodium atoms with sixteen carbonyl ligands analogous to that of the known compound Rh6(CO)16. Compound 10 also contains three Pd(PBu t 3) groups that bridge three Rh–Rh bonds along edges of the Rh6 octahedron to give an overall D3 symmetry to the Rh6Pd3 cluster. Compound 11 contains four edge bridging Pd(PBu t 3) groups distributed across the Rh6 octahedron to give an overall D2d symmetry to the Rh6Pd4 cluster. Each Rh–Pd connection in both compounds contains a bridging carbonyl ligand that helps to stabilize the bond between the Pd(PBu t 3) groups and the Rh atoms. Both compounds can be regarded as Pd(PBu t 3) adducts of Rh6(CO)16.  相似文献   

11.
By reacting [Pd( )(μ-Cl)]2 with AgClO4 in NCMe, the corresponding cationic complexes [Pd( )(NCMe)2]ClO4 ( = phenylazophenyl-C2,N1; dimethylbenzylamine-C2,N; 8-methylquinoline-C8,N) can be obtained. Solutions containing the cations [Pd( )(S)2]+ are obtained when the reaction is carried out in tetrahydrofuran or acetone (S). The treatment of these solutions with bidentate ligands (L—L) (Ph2PCH2PPh2,Ph2PNHPPh2 or Ph2PCH2PPh2CHC(O)Ph) gives the mononuclear [Pd( )(L3l)]ClO4 complexes, with L3l acting as a chelate ligand. On the other hand [Pd( (μ-Cl)]2 reacts with L3l (Ph2PCH2PPh2, Ph2PNHPPh2) yielding [Pd( )Cl(L3l)] with L3l acting as monodentate. The reactions between [Pd( )(NCMe)2]ClO4 and 2,2′-bipyrimidyl give rise to the formation of the mononuclear [Pd( ) (bipym)]ClO4 or binuclear [Pd2( )2(μ-bipym)](ClO4)2, [( )Pd(μ-bipym)Pd( )](ClO4)2 derivatives. Finally [Pd( )Cldppm] (dppm = Ph2PCH2PPh2) react with NaH producing the neutral complexes [Pd( )(ddppm)] (ddppm = Ph2PCHPPh2) which by reaction with HCl lead again to the starting materials [Pd( )Cl(dppm)].  相似文献   

12.
The ortho-metalated complex [Pd(x){κ 2 (C,N)-[C6H4CH2NRR′ (Y)}] (2a4a and 2b3b) was prepared by refluxing in benzene equimolecular amounts of Pd(OAc)2 and secondary benzylamine [a, EtNHCH2Ph; b, t-BuNHCH2Ph followed by addition of excess NaCl. The reaction of the complexes [Pd(x){κ 2 (C,N)-[C6H4CH2NRR′ (Y)}] (2a4a and 2b3b) with a stoichiometric amount of Ph3P=C(H)COC6H4-4-Z (Z = Br, Ph) (ZBPPY) (1:1 molar ratio), in THF at low temperature, gives the cationic derivatives [Pd(OC(Z-4-C6H4C=CHPPh3){κ 2 (C,N)-[C6H4CH2NRR′(Y)}] (5a9a, 4b6b, and 4b′6b′), in which the ylide ligand is O-coordinated to the Pd(II) center and trans to the ortho-metalated C(6)H(4) group, in an “end-on carbonyl”. Ortho-metallation, ylide O-coordination, and C-coordination in complexes (5a9a, 4b6b, and 4b′6b′) were characterized by elemental analysis as well as various spectroscopic techniques.  相似文献   

13.
In catalytic two-step n-butene oxidation with dioxygen to methyl ethyl ketone, the first step is the oxidation of n-C4H8 with an aqueous solution of Mo-V-P heteropoly acid in the presence of Pd(II) complexes. The kinetics of n-butene oxidation with solutions of H7PV4Mo8O40 (HPA-4) in the presence of the Pd(II) dipicolinate complex (H2O)PdII(dipic) (I), where dipic2− is the tridentate ligand 2,6-NC5H3(COO)2, is studied. Calculation shows that, at the ratio dipic2−: Pd(II) = 1: 1, the ligand decreases the redox potential of the Pd(II)/Pdmet system from 0.92 to 0.73–0.77, due to which Pd(II) is stabilized in reduced solutions of HPA-4. The reaction is first-order with respect to n-C4H8. Its order with respect to Pd(II) is slightly below unity, and its order with respect to HPA-4 is relatively low (∼0.63). The activation energy of but-1-ene oxidation in the temperature range from 40 to 80°C is 49.0 kJ/mol, and that of the oxidation of but-2-ene is 55.6 kJ/mol. The mechanism of the reaction involving the cis-diaqua complex [(H2O)2PdII(Hdipic)]+, which forms reversibly from complex I, is proposed. The reaction rate is shown to increase with an increase in the HPA-4 concentration due to an increase in the acidity of the solution.  相似文献   

14.
Abstract

Reactions of a series of binuclear, phosphine bridged late transition metal complexes, Pd2Cl2(dppm)2, Pd2Cl2(dmpm)2, Pd2Cl2(Ph2Ppy)2, Pt2Cl2(dppm)2, and Ag2Br2(dppm)2, with Me3SiX (X = Br, I), Me3GeBr and Me3SnBr were examined by 31P NMR spectroscopy. Rapid exchange of Pd-Cl, Pt-Cl and Ag-Br bonds for Pd-X, Pt-X (X = Br, I) and Ag-I bonds was observed to be independent of the nature of the phosphine ligand, the nature of the metal center or the group IV element. Differences in Lewis acidity of the transition metal center as a function of the ligands and the identity of the transition metal and differences in the basicity of the Me3EBr ligands are proposed to account for the failure to detect intermediates in these reactions similar to those reported for reactions between Pd2Cl2(dppm)2 and Me3SiX.  相似文献   

15.
Two carboxamide ligands, H2bqbenzo {3,4-bis(2-quinolinecarboxamido)benzophenone} and H2bqb {N,N′-bis[(2-quinolinecarboxamide)-1,2-benzene]}, have been prepared using tetrabutylammonium bromide as an environmentally benign reaction medium. Two new Pd(II) complexes, [PdII(bqbenzo)] (1) and [PdII(bqb)] (2), have been synthesized, characterized, and their structures determined by single crystal X-ray diffraction. The di-anionic ligands, bqbenzo2? and bqb2?, are coordinated via two Namide atoms and the nitrogens of the two quinoline rings, with Pd?Namide < Pd–Nquinoline bond lengths. The geometry around palladium(II) in both complexes is distorted square planar. The electrochemical behaviors of the ligands and their Pd(II) complexes have been investigated by cyclic voltammetry in DMF. An irreversible PdII/I reduction is observed at ?1.06 V for 1 and at ?1.177 V for 2, indicating the influence of the R substituent on the central phenyl ring of carboxamide ligands on the PdII/I reduction potential. The ligands and palladium complexes were also screened for in vitro antibacterial activity. The Pd(II) complexes show strong biological activity against S.typhi and E.coli as Gram ?ve and B.cereus and S.aureus as Gram +ve bacteria comparable to the antibiotic penicillin. The antibacterial results also reveal that coordination of Pd(II) significantly improves the activity.  相似文献   

16.
Ion mobility-mass spectrometry is used to study the new conformers of bovine ubiquitin (Ub) and the palladium(II) binding sites after the incubation with cis-[Pd(en)(H2O)2]2+ where en = ethylenediamine. Palladium(II) complexes are potentially useful proteomic reagents because they selectively bind to the side groups of methionine and histidine and hydrolytically cleave the peptide bond. Incubating 1.0 mM solution of Ub with 10.0 molar excess of cis-[Pd(en)(H2O)2]2+ results with one to four Pd2+ or Pd(en)2+ being attached to intact Ub and two conformer families at each of the 4+ to 11+ charge states. The 4+ and 5+ species exhibit a compact form, which is also observed in untreated Ub, and a new highly folded conformer. The 6+ to 10+ exhibit an elongated form, also observed in Ub, and a new partially folded conformer. The new conformers are shown to be more stable if they contain at least one Pd2+, rather than all Pd(en)2+. IM-MS/MS of [UbPd2en+5H]9+ shows that both the partially folded and elongated conformers first lose the en ligand, followed by dissociating into product ions that indicate that Met1, Glu51/Asp52, His68, and Glu16 are binding sites for Pd2+. These results suggest that Pd2+ is simultaneously binding to multiple side groups across different regions of Ub. This type of sequestering of Pd2+ probably reduces the efficiency of Pd2+ ions to selectively cleave Ub because it prevents Pd2+ anchoring to only Met or His and to an adjacent backbone amide nitrogen and forming the “activated complex” necessary for specific peptide bond cleavage.  相似文献   

17.
Complexation between crystalline trans-[Pd(H2O)2(NO3)2] and acetylacetone was studied. The complexes Pd2(Acac)2(μ-NO3)2(I) and Pd2(Acac)2(μ-Acac)(μ-NO3)(II) were obtained and examined by elemental analysis, X-ray powder diffraction analysis, differential scanning calorimetry, simultaneous thermal analysis, mass spectrometry, and vibrational spectroscopy.  相似文献   

18.
It has been shown for the first time that the reaction of bi-valent tin acetyl-acetonate with palladium carbonylphosphine clusters, Pd4(CO)5(PPh3)4 (I), Pd4(CO)5(PEt3)4 (II) and Pd3(CO)3(PPh3)4 (III), results in the formation of heterometal pentanuclear clusters of general formula Pd3Sn2(acac)4(CO)2(PR3)3; R  Ph (IV), Et (V). X-ray analysis of Pd3Sn2(acac)4(CO)2(PPh3)3 at 20°C (λ(Mo), 4396 reflections, space group P21/n, Z = 4, R = 0.037) shows that IV in the form of the crystalline hydrate, Pd3Sn2(acac)4(CO)2(PPh3)3 · χH2O (χ ∼ 1), contains a distorted “propeller”-shaped Pd3Sn2 metal frame with PdSn distances of 2.679–2.721(1) Å; two short PdPd bonds, 2.708 and 2.720(1) Å, bridged by μ2-CO ligands, and an elongated central Pd(1)Pd(2) bond of 2.798 Å. Sn atoms have distorted octahedral coordination, the dihedral angles formed by Pd3 moieties and two Pd2Sn triangles are 127.6 and 106.5°; and the angle between Pd2Sn moieties is 126.0°.  相似文献   

19.
Pd(II) complexes with glutamic acid of the composition K[Pd(HGlu)Cl2] (I) and [Pd(HGlu)2] (II) were synthesized and studied by IR and electronic absorption spectroscopy methods. Pd2+–H2O–Cl and Pd2+–H2O–Cl–H2Glu systems were analyzed by pH-metric titration. The most essential Pd(II) complex forms were established by mathematical modeling and their formation constants were calculated. The electronic absorption spectra of complexes I and II were measured in aqueous and physiological solutions. Complex I was found to be biologically active and to exhibit antimetastatic properties.  相似文献   

20.
Reaction of [Pd(dppe)Cl2/Br2] with AgOTf in a dichloromethane medium followed by ligand addition led to [Pd(dppe)(OSO2CF3)2] and then [Pd(dppe)(RaaiR)](OSO2CF3)2 [RaaiR′ = p-R-C6H4-N=N-C3H2-NN-1-R′, (1–3), abbreviated as a N,N′-chelator, where N(imidazole) and N(azo) are represented by N and N′, respectively; R = H (a), Me (b), Cl (c) and R′ = Me (1), CH2CH3 (2), CH2Ph (3), OSO2CF3 is the triflate anion, dppe = 1,2-bis-(diphenylphosphinoethane)]. 31P “1H” NMR confirmed that due to the two phosphorus atom interaction in the azoimine symmetrical environment one sharp peak was formed. The 1H NMR spectral measurements suggest that azo-imine link with lot of phenyl protons in the aromatic region. 13C (1H) NMR spectrum, 1H, 1H COSY and 1H, 13C HMQC spectrum assign the solution structure and stereo-retentive conformation in each complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号