首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper,we use the a-plane InGaN interlayer to improve the property of a-plane GaN.Based on the a-InGaN interlayer,a template exhibits that a regular,porous structure,which acts as a compliant effect,can be obtained to release the strain caused by the lattice and thermal mismatch between a-GaN and r-sapphire.We find that the thickness of InGaN has a great influence on the growth of a-GaN.The surface morphology and crystalline quality both are first improved and then deteriorated with increasing the thickness of the InGaN interlayer.When the InGaN thickness exceeds a critical point,the a-GaN epilayer peels off in the process of cooling down to room temperature.This is an attractive way of lifting off a-GaN films from the sapphire substrate.  相似文献   

2.
High-quality and nearly crack-free GaN epitaxial layer was obtained by inserting a single AlGaN interlayer between GaN epilayer and high-temperature AlN buffer layer on Si (111) substrate by metalorganic chemical vapor deposition. This paper investigates the effect of AlGaN interlayer on the structural properties of the resulting GaN epilayer. It confirms from the optical microscopy and Raman scattering spectroscopy that the AlGaN interlayer has a remarkable effect on introducing relative compressive strain to the top GaN layer and preventing the formation of cracks. X-ray diffraction and transmission electron microscopy analysis reveal that a significant reduction in both screw and edge threading dislocations is achieved in GaN epilayer by the insertion of AlGaN interlayer. The process of threading dislocation reduction in both AlGaN interlayer and GaN epilayer is demonstrated.  相似文献   

3.
谢自力  李弋  刘斌  张荣  修向前  陈鹏  郑有炓 《中国物理 B》2011,20(10):106801-106801
The non-polar a-plane GaN is grown on an r-plane sapphire substrate directly without a buffer layer by metal-organic chemical vapour deposition and the effects of V/III ratio growth conditions are investigated. Atomic force microscopy results show that triangular pits are formed at a relatively high V/III ratio, while a relatively low V/III ratio can enhance the lateral growth rate along the c-axis direction. The higher V/III ratio leads to a high density of pits in comparison with the lower V/III ratio. The surface morphology is improved greatly by using a low V/III ratio of 500 and the roughness mean square of the surface is only 3.9 nm. The high resolution X-ray diffraction characterized crystal structural results show that the rocking curve full width at half maximum along the m axis decreases from 0.757° to 0.720°, while along the c axis increases from 0.220° to 0.251° with the V/III increasing from 500 μmol/min to 2000 μmol/min, which indicates that a relatively low V/III ratio is conducible to the c-axis growth of a-plane GaN.  相似文献   

4.
The performance of a multiple quantum well (MQW) InGaN solar cell with double indium content is investigated. It is found that the adoption of a double indium structure can effectively broaden the spectral response of the external quantum efficiencies and optimize the overall performance of the solar cell. Under AM1.5G illumination, the short-circuit current density (Jsc) and conversion efficiency of the solar cell are enhanced by 65% and 13% compared with those of a normal single-indium-content MQW solar cell. These improvements are mainly attributed to the expansion of the absorption spectrum and better extraction efficiency of the photon-generated carriers induced by higher polarization.  相似文献   

5.
Non-polar a-plane (110) GaN films have been grown on r-plane (102) sapphire substrates by metal organic chemical vapour deposition. The influences of Ⅴ/Ⅲ ratio on the species diffusion anisotropy of a-plane GaN films were investigated by scanning electron microscopy, cathodoluminescence and high-resolution x-ray diffraction measurements. The anisotropy of a-plane GaN films may result from the different migration length of adatoms along two in-plane directions. Ⅴ/Ⅲ ratio has an effect on the growth rates of different facets and crystal quality. The stripe feature morphology was obviously observed in the film with a high V/III ratio because of the slow growth rate along the [100] direction. When the Ⅴ/Ⅲ ratio increased from 1000 to 6000, the in-plane crystal quality anisotropy was decreased due to the weakened predominance in migration length of gallium adatoms.  相似文献   

6.
The effects of V/Ⅲgrowth flux ratio on a-plane GaN films grown on r-plane sapphire substrates with an InGaN interlayer are investigated.The surface morphology,crystalline quality,strain states,and density of basal stacking faults were found to depend heavily upon the V/Ⅲratio.With decreasing V/Ⅲratio,the surface morphology and crystal quality first improved and then deteriorated,and the density of the basal-plane stacking faults also first decreased and then increased.The optimal V/Ⅲratio growth condition for the best surface morphology and crystalline quality and the smallest basalplane stacking fault density of a-GaN films are found.We also found that the formation of basal-plane stacking faults is an effective way to release strain.  相似文献   

7.
利用金属有机物化学气相沉积系统在蓝宝石衬底上通过有源层的变温生长,得到In组分渐变的量子阱结构,从而获得具有三角形能带结构的InGaN/GaN多量子阱发光二极管(LED)(简称三角形量子阱结构LED).变温光致发光谱结果表明,相对于传统具有方形能带结构的量子阱LED(简称方形量子阱结构LED),三角形量子阱结构有效提高了量子阱中电子和空穴波函数的空间交叠,从而增加了LED的内量子效率;电致发光谱结果表明,三角形量子阱结构LED器件与传统结构LED器件相比,明显改善了发光峰值波长随着电流的蓝移现象.通过以上  相似文献   

8.
The electroluminescence (EL) and photoluminescence (PL) spectra of InGaN/GaN multiple quantum wells (MQWs) with a prestrained InGaN interlayer in a laser diode structure are investigated. When the injection current increases from 5 mA to 50 mA, the blueshift of the EL emission peak is 1 meV for the prestrained sample and 23 meV for a control sample with the conventional structure. Also, the internal quantum efficiency and the EL intensity at the injection current of 20 mA are increased by 71% and 65% respectively by inserting the prestrained InGaN interlayer. The reduced blueshift and the enhanced emission are attributed mainly to the reduced quantum-confined Stark effect (QCSE) in the prestrained sample. Such attributions are supported by the theoretical simulation results, which reveal the smaller piezoelectric field and the enhanced overlap of electron and hole wave functions in the prestrained sample. Therefore, the prestrained InGaN interlayer contributes to strain relaxation in the MQW layer and enhancement of light emission due to the reduction of QCSE.  相似文献   

9.
The advantages of InGaN based light-emitting diodes with InGaN/GaN multilayer barriers are studied.It is found that the structure with InGaN/GaN multilayer barriers shows improved light output power,lower current leakage,and less efficiency droop over its conventional InGaN/GaN counterparts.Based on the numerical simulation and analysis,these improvements on the electrical and the optical characteristics are mainly attributed to the alleviation of the electrostatic field in the quantum wells(QWs) when the InGaN/GaN multilayer barriers are used.  相似文献   

10.
We present the growth of GaN epilayer on Si (111) substrate with a single AlGaN interlayer sandwiched between the GaN epilayer and AlN buffer layer by using the metalorganic chemical vapour deposition. The influence of the AlN buffer layer thickness on structural properties of the GaN epilayer has been investigated by scanning electron microscopy, atomic force microscopy, optical microscopy and high-resolution x-ray diffraction. It is found that an AlN buffer layer with the appropriate thickness plays an important role in increasing compressive strain and improving crystal quality during the growth of AlGaN interlayer, which can introduce a more compressive strain into the subsequent grown GaN layer, and reduce the crack density and threading dislocation density in GaN film.  相似文献   

11.
GaN/InGaN superlattice barriers are used in InGaN-based light-emitting diodes (LEDs). The electrostatic field in the quantum wells, electron hole wavefunction overlap, carrier concentration, spontaneous emission spectrum, light-current performance curve, and internal quantum efficiency are numerically investigated using the APSYS simulation software. It is found that the structure with GaN/InGaN superlattice barriers shows improved light output power, and lower current leakage and efficiency droop. According to our numerical simulation and analysis, these improvements in the electrical and optical characteristics are mainly attributed to the alleviation of the electrostatic field in the active region.  相似文献   

12.
采用金属有机物化学气相沉积方法生长得到具有不同Mg掺杂浓度InxGa1-xN (0≤x≤0.3)外延材料样品. 对样品的电学特性和光学特性进行了系统的研究. 研究发现:在固定Mg掺杂浓度下,随In组分的提高,样品空穴浓度显著提高,最高达2.4×1019cm-3,Mg的活化效率提高了近两个数量级;通过对Mg掺杂InGaN(InGaN:Mg)样品的光致发光(PL)谱的分析,解释了InGaN:Mg样品的载流子跃迁机理,并确定了样品中Mg受主激活能和深施主能级的位置. 关键词: Mg掺杂InGaN 高空穴浓度 光致发光 金属有机物化学气相沉积  相似文献   

13.
李国斌  陈长水  刘颂豪 《发光学报》2013,34(9):1233-1239
运用软件模拟和理论计算的方法分析了In含量对发光二极管光电性能的影响,研究了In含量与光谱功率密度、量子阱中载流子的浓度、辐射速率、发光功率等之间的关系。分析结果表明:电子泄漏与能带填充是影响光电性能的主要原因。当In含量较低时,随着电流密度增大(<8 kA/cm2),光谱发生蓝移程度相对较小,但电流密度太大(>8 kA/cm2)会造成电子泄漏,发光功率降低;而当In含量较高时,随着电流密度增大,光谱发生蓝移程度相对较大,但在电流密度较大时,会获得较高的发光功率。因此,为了使InGaN/GaN发光二极管获得最大量子效率与发光效率,应该根据电流密度的大小(8 kA/cm2)来选择In含量的高低。  相似文献   

14.
金属有机化学汽相沉积生长InGaN薄膜的研究   总被引:2,自引:1,他引:1  
以Al2O3为衬底,采用金属有机汽相沉积(MOCVD)技术在GaN膜上生长了InxGa1-xN薄膜。以卢瑟福背散射/沟道技术和光致发光技术对InxGa1-xN/GaN/Al2O3样品进行了分析,研究表明,金属有机汽相沉积生长高In组分InxGa1-xN薄膜有一最佳TMIn/TEGa摩尔流量比。在一定范围内,降低其摩尔流量比,合金的生长速率增高,In组分提高;进一步降低TMIn/TEGa摩尔流量比,导致In组分下降,研究还表明,InGan薄膜的结晶品质随In组分的增大而下降,InGan薄膜的In组分由0.04增大到0.10,其最低沟道产额比由4.1%增至11.0%。  相似文献   

15.
In this study, the influence of multiple interruptions with trimethylindium(TMIn)-treatment in InGaN/GaN multiple quantum wells(MQWs) on green light-emitting diode(LED) is investigated. A comparison of conventional LEDs with the one fabricated with our method shows that the latter has better optical properties. Photoluminescence(PL) full-width at half maximum(FWHM) is reduced, light output power is much higher and the blue shift of electroluminescence(EL) dominant wavelength becomes smaller with current increasing. These improvements should be attributed to the reduced interface roughness of MQW and more uniformity of indium distribution in MQWs by the interruptions with TMIn-treatment.  相似文献   

16.
Metal organic chemical vapor deposition (MOCVD) has been used to grow vanadium-doped GaN (GaN:V) on c-sapphire substrate using VCl4 as the V source. The as-grown GaN:V exhibited a saturated magnetic moment (Ms) of 0.28 emu/cm3 at room temperature. Upon high-temperature annealing treatment at 1100 °C for 7 min under N2 ambient, the Ms of the GaN:V increased by 39.28% to 0.39 emu/cm3. We found that rapid thermal annealing leads to a remarkable increase in surface roughness of the V-doped GaN as well as the electron concentration. The annealing also leads to a significant increase in the Curie temperature (TC), we have identified Curie temperatures about 350 K concluded from the difference between the field-cooled and zero-field-cooled magnetizations. Structure characterization by x-ray diffraction indicated that the ferromagnetic properties are not a result of secondary magnetic phases.  相似文献   

17.
SiNx插入层的生长位置对GaN外延薄膜性质的影响   总被引:3,自引:2,他引:1       下载免费PDF全文
系统研究了纳米量级的多孔 SiNx插入层生长位置对高质量GaN外延薄膜性质的影响.高分辨X射线衍射测量结果表明:SiNx插入层生长在CaN粗糙层上能够得到最好的晶体质量.利用测量结果分别计算出了螺位错和刃位错的密度.此外,GaN薄膜的光学、电学性质分别用Raman散射能谱、低温光致发光能谱和霍尔测量的方法进行了表征.实...  相似文献   

18.
InGaN/GaN multiple quantum well (MQW) solar cells with stepped-thickness quantum wells (SQW) are designed and grown by metal-organic chemical vapor deposition. The stepped-thickness quantum wells structure, in which the well thickness becomes smaller and smaller along the growth direction, reveals better crystalline quality and better spectral overlap with the solar spectrum. Consequently, the short-circuit current density (Jsc) and conversion efficiency of the solar cell are enhanced by 27.12% and 56.41% compared with the conventional structure under illumination of AM1.5G (100 mW/cm2). In addition, approaches to further promote the performance of InGaN/GaN multiple quantum well solar cells are discussed and presented.  相似文献   

19.
许恒  闫龙  李玲  张源涛  张宝林 《发光学报》2017,38(3):324-330
Ag纳米粒子的形貌对InGaN/Ga N多量子阱(MQWs)的光致发光(PL)效率有着显著影响。本文采用离子束沉积(IBD)技术将Ag沉积在InGaN/Ga N MQWs上,然后通过快速热退火处理制备Ag纳米粒子。通过改变Ag的沉积时间获得了具有不同Ag纳米粒子形貌的样品。用原子力显微镜对各样品的Ag纳米粒子形貌和尺寸进行了表征,并且测试了吸收谱、室温和变温PL谱及时间分辨光致发光(TRPL)谱。结果表明:随着Ag沉积时间的延长,所得Ag纳米粒子粒径增大,粒子纵横比先增大后减小且吸收谱峰红移。由于不同形貌的Ag纳米粒子在入射光作用下产生的局域表面等离激元(LSPs)与MQWs中激子耦合强度不同,光发射能力也不同,与没有Ag纳米粒子的样品相比,沉积时间为15 s的样品室温PL积分强度被抑制6.74倍,沉积时间为25 s和35 s的样品室温PL积分强度分别增强1.55和1.72倍且峰位发生红移,沉积时间为45 s的样品室温PL积分强度基本没有变化。TRPL与变温PL的测试结果证明,室温PL积分强度的改变是由于LSPs与MQWs中的激子耦合作用引起的。纵横比大且吸收谱与MQWs的PL谱交叠大的Ag纳米粒子能够更好地增强InGaN/Ga N MQWs的发光。  相似文献   

20.
邢艳辉  韩军  刘建平  邓军  牛南辉  沈光地 《物理学报》2007,56(12):7295-7299
利用金属有机物化学气相淀积技术在蓝宝石衬底上生长InGaN/GaN多量子阱结构.对多量子阱垒层掺In和非掺In进行了比较研究,结果表明,垒掺In 的样品界面质量变差,但明显增加了光致发光谱的峰值强度和积分强度,带边峰与黄光峰强度之比增大,降低了表面粗糙度.利用这两种结构制备了相应的发光二极管(LED)样品.通过电荧光测量可知,垒掺In的LED比非掺In的LED有较高的发光强度和相对均匀的波长,这主要是由于垒掺In后降低了阱与垒之间晶格失配的应力,从而降低了极化电场,提高了辐射复合效率. 关键词: InGaN/GaN多量子阱 X射线双晶衍射 原子力显微镜 光致发光  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号