首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Co2 FeSi films are deposited on Si(100) substrates by an oblique sputtering method at ambient temperature. It is revealed that the microwave ferromagnetic properties of Co2 FeSi films are sensitive to sample position and sputtering power. It is exciting that the as-deposited films without any magnetic annealing exhibit high in-plane uniaxial anisotropy fields in a range of 200 Oe–330 Oe(1 Oe = 79.5775 A·m-1), and low coercivities in a range of 5 Oe–28 Oe. As a result,high self-biased ferromagnetic resonance frequency up to 4.75 GHz is achieved in as-deposited oblique sputtered films.These results indicate that Co2 FeSi Heusler alloy films are promising in practical applications of RF/microwave devices.  相似文献   

2.
The Fe–Cu–Nb–Si–B alloy nanocomposite containing two ferromagnetic phases(amorphous phase and nanophase phase) is obtained by properly annealing the as-prepared alloys. High resolution transmission electron microscopy(HRTEM) images show the coexistence of these two phases. It is found that Fe–Si nanograins are surrounded by the retained amorphous ferromagnetic phase. M¨ossbauer spectroscopy measurements show that the nanophase is the D03-type Fe–Si phase, which is employed to find the atomic fractions of resonant57 Fe atoms in these two phases. The microwave permittivity and permeability spectra of Fe–Cu–Nb–Si–B nanocomposite are measured in the frequency range of 0.5 GHz–10 GHz. Large relative microwave permeability values are obtained. The results show that the absorber containing the nanocomposite flakes with a volume fraction of 28.59% exhibits good microwave absorption properties. The reflection loss of the absorber is less than-10 dB in a frequency band of 1.93 GHz–3.20 GHz.  相似文献   

3.
Multiferroic properties and exchange bias(EB) in Bi1-xSrxFeO3(x = 0–0.6) ceramics synthesized by a modified Pechini method are investigated. Sr concentration dependence of structure distorting, ferroelectric properties, and dielectric properties were studied at room temperature. Appropriate Sr doping(x = 0.05–0.2) has been found to decrease the conductivity, enhance ferroelectric properties and give rise to high dielectric constant. Compared with antiferromagnetic BiFeO3 compound, BSFO-x(0 ≤ x ≤ 0.4) ceramics show weak ferromagnetism at room temperature, and their exchange bias field and vertical magnetization shift are observed and exhibit a strong dependence on the content of Sr. This observed EB effect which keeps stable in BSFO ceramics at 10 K tend to vanish at room temperature with Sr concentration over 0.4.  相似文献   

4.
The mechanism for the effects of pressure on the magnetic properties and the martensitic transformation of Ni-Mn- Sn shape memory alloys is revealed by first-principles calculations. It is found that the total energy difference between paramagnetic and ferromagnetic austenite states plays an important role in the magnetic transition of Ni-Mn-Sn under pressure. The pressure increases the relative stability of the martensite with respect to the anstenite, leading to an increase of the martensitic transformation temperature. Moreover, the effects of pressure on the magnetic properties and the martensitic transformation are discussed based on the electronic structure.  相似文献   

5.
The specific heats of both a two-layer ferromagnetic superlattice and a two-layer ferrimagnetic one are studied. It is found that the spin quantum numbers, the interlayer and intralayer exchange couplings, the anisotropy, the applied magnetic field, and the temperature all affect the specific heat of these superlattices. For both the ferromagnetic and ferrimagnetic superlattices, the specific heat decreases with increasing the spin quantum number, the absolute value of interlayer exchange coupling, intralayer exchange coupling, and anisotropy, while it increases with increasing temperature at low temperatures. When an applied magnetic field is enhanced, the specific heat decreases in the twolayer ferromagnetic superlattice, while it is almost unchanged in the two-layer ferrimagnetic superlattice at low field range at low temperatures.  相似文献   

6.
A new modulated structure consisting of periodic (1120) stacking faults (SFs) in the α-Fe2O3 nanowires (NWs) formed by the thermal oxidation of Fe foils is reported, using a combination of high-resolution transmission electron microscopy (HRTEM) observations and HRTEM image simulations. The periodicity of the modulated structure is 1.53 nm, which is ten times (3500) interplanar spacing and can be described by a shift of every ten (3500) planes with 1/2 the interplanar spacing of the (1120) plane. An atomic model for the Fe203 structure is proposed to simulate the modulated structure. HRTEM simulation results confirm that the modulated structure in α-Fe2O3 NWs is caused by SFs.  相似文献   

7.
Transport properties on the surface of a topological insulator (TI) under the modulation of a two-dimensional (2D) ferromagnet/ferromagnet junction are investigated by the method of wave function matching. The single ferromagnetic barrier modulated transmission probability is expected to be a periodic function of the polarization angle and the planar rotation angle, that decreases with the strength of the magnetic proximity exchange increasing. However, the transmission probability for the double ferromagnetic insulators modulated n-n junction and n-p junction is not a periodic function of polarization angle nor planar rotation angle, owing to the combined effects of the double ferromagnetic insulators and the barrier potential. Since the energy gap between the conduction band and the valence band is narrowed and widened respectively in ranges of 0 ≤ 0 〈π/2 and r/2 〈 0 ≤ π, the transmission probability of the n-n junction first increases rapidly and then decreases slowly with the increase of the magnetic proximity exchange strength. While the transmission probability for the n-p junction demonstrates an opposite trend on the strength of the magnetic proximity exchange because the band gaps contrarily vary. The obtained results may lead to the possible realization of a magnetic/electric switch based on TIs and be useful in further understanding the surface states of TIs.  相似文献   

8.
安兴涛 《中国物理 B》2014,(10):468-472
The effect of the negative differential conductance of a ferromagnetic barrier on the surface of a topological insulat( is theoretically investigated. Due to the changes of the shape and position of the Fermi surfaces in the ferromagnetic barrie the transport processes can be divided into three kinds: the total, partial, and blockade transmission mechanisms. The bias voltage can give rise to the transition of the transport processes from partial to blockade transmission mechanisms, which results in a considerable effect of negative differential conductance. With appropriate structural parameters, the currenl voltage characteristics show that the minimum value of the current can reach to zero in a wide range of the bias voltag and then a large peak-to-valley current ratio can be obtained.  相似文献   

9.
This paper investigates the effects of substitution of Si for Ga on the martensitic transformation behaviours in Ni-Fe-Ga alloys by using optical metallographic microscope and differential scanning calorimetry (DSC) methods. The structure type of Ni55.5Fe18Ga26.5-xSix alloys is determined by x-ray diffraction (XRD),and the XRD patterns show the microstructure of Ni-Fe-Ga-Si alloys transformed from body-centred tetragonal martensite (with Si content x = 0) to body-centred cubic austenite (with x = 2) at room temperature. The martensitic transformation temperatures of the Ni55.5Fe18Ga26.5-xSix alloys decrease almost linearly with increasing Si content in the Si content range of x ≤ 3. Thermal treatment also plays an important role on martensitic transformation temperatures in the Ni-Fe-Ga-Si alloy. The valence electronic concentrations,size factor,L21 degree of order and strength of parent phase influence the martensitic transformation temperatures of the Ni-Fe-Ga-Si alloys. An understanding of the relationship between martensitic transformation temperatures and Si content will be significant for designing an appropriate Ni-Fe-Ga-Si alloy for a specific application at a given temperature.  相似文献   

10.
The Bogoliubov de Gennes equation is applied to the study of coherence effects in the ferromagnetic superconductor/insulator/normal metal/insulator/ferromagnetic/superconductor (FS/I/N/I/FS) junction. We calculated the Josephson current in FS/I/N/I/FS as a function of exchange field in ferromagnetic superconductor, temperature, and normal metal thickness. It is found that the Josephson critical current in FS/I/N/I/FS exhibits oscillations as a function of the length of normal metal. The exchange field always suppresses the Josephson critical current Ip for a parallel configuration of the magnetic moments of two ferromagnetic superconductor (FS) electrodes. In the antiparallel configuration, the Josephson critical current IAv at the minimum values of oscillation increases with the exchange field for strong barrier strength and at low temperatures.  相似文献   

11.
Bi0.9Ba0.lFeO3 (BBFO)/La2/3Srl/3MnO3 (LSMO) heterostructures are fabricated on LaA103 (100) substrates by pulsed laser deposition. Giant remnant polarization value (~ 85 μC/cm2) and large saturated magnetization value (~ 12.4 emu/cm3) for BBFO/LSMO heterostructures are demonstrated at room temperature. Mixed ferroelectric domain structures and low leakage current are observed and in favor of enhanced ferroelectrie properties in the BBFO/LSMO het- erostructures. The magnetic field-dependent magnetization measurements reveal the enhancement in the magnetic moment and improved magnetic hysteresis loop originating from the BBFO/LSMO interface. The heterostructure is proved to be effective in enhancing the ferroelectric and ferromagnetic performances in multiferroic BFO films at room temperature.  相似文献   

12.
The frequency in middle of magnon energy band in a five-layer ferromagnetic superlattice is studied by using the linear spin-wave approach and Green's function technique. It is found that four energy gaps and corresponding four frequencie in middle of energy gaps exist in the magnon band along Kx direction perpendicular to the superlattice plane. The spin quantum numbers and the interlayer exchange couplings all affect the four frequencies in middle of the energy gaps. When all interlayer exchange couplings are same, the effect of spin quantum numbers on the frequency wg1 in middle of the energy gap Δw12 is complicated, and the frequency wg1 depends on the match of spin quantum numbers in each layer. Meanwhile, the frequencies wg2, wg3, and wg4 in middle of other energy gaps increase monotonously with increasing spin quantum numbers. When the spin quantum numbers in each layer are same, the frequencies wg1, wg2, wg3, and wg4 all increase monotonously with increasing interlayer exchange couplings.  相似文献   

13.
Nanocrystalline Ge (nc-Ge) single layers and nc-Ge/SiNx multilayers are prepared by laser annealing amorphous Ge (a-Ge) films and a-Ge/SiNx multilayers. The microstructures as well as the electrical properties of laser-crystallized samples are systematically studied by using various techniques. It is found that the optical band gap of nc-Ge film is reduced compared with its amorphous counterpart. The formed nc-Ge film is of p-type, and the dark conductivity is enhanced by 6 orders for an nc-Ge single layer and 4 orders for a multilayer. It is suggested that the carrier transport mechanism is dominant by the thermally activation process via the nanocrystal, which is different from the thermally annealed nc-Ge sample at an intermediate temperature. The carrier mobility of nc-Ge film can reach as high as about 39.4 cm2.V ^-1 .s^-1, which indicates their potential applications in future nano-devices.  相似文献   

14.
Crystalline BiFeO3 (BFO) films each with a crystal structure of a distorted rhombohedral perovskite are characterized by X-ray diffraction (XRD) and high-resolution electron microscopy (HRTEM). The diffusion of silicon atoms from the substrate into the BiFeO3 film is detected by Rutherford backscattering spectrometry (RBS). The element analysis is per- formed by energy dispersive X-ray spectroscopy (EDS). Simulation results of RBS spectrum show a visualized distribution of silicon. X-ray photoelectron spectroscopy (XPS) indicates that a portion of silica is formed in the diffusion process of silicon atoms. Ferroelectric and weak ferromagnetic properties of the BFO films are degraded due to the diffusion of silicon atoms. The saturation magnetization decreases from 6.11 down to 0.75 emu/g, and the leakage current density increases from 3.8 × 10^-4 upto7.1 × 10^-4 A/cm-2.  相似文献   

15.
Based on Smith-Beljers theory and classical laminate theory, an explicit model is proposed for the ferromagnetic resonance (FMR) frequency shift of a stress-mediumed laminated magnetoelectric structure tuned by an electric field. This model can effectively predict the experimental phenomenon that the FMR frequency increases under a parallel magnetic field and decreases under a perpendicular magnetic field when the electric field ranges from - 10 kV/m to 10 kV/m. Besides, this theory further shows that the FMR frequency increases monotonically as the angle between the direction of the external magnetic field and the outside normal direction of the laminated structure increases, and the frequency will increase as great as 7 GHz. In addition, when the angle reaches a certain critical value, the external electric field fails to tune the FMR frequency. When the angle is above the critical value, the increase of the electric field induces the FMR frequency to increase, and the opposite scenario happens when it is below the critical value. When the angle is 90~ (parallel magnetic field), the FMR frequency is the most sensitive to the change of the electric field.  相似文献   

16.
Versatile and gigantic magnetoelectric (ME) phenomena have been found for a single crystal of DyFeO3. Below the antiferromagnetic ordering temperature of Dy moments, a linear-ME tensor component as large as alphazz approximately 2.4 x 10(-2) esu is observed. It is also revealed that application of magnetic field along the c axis induces a multiferroic (weakly ferromagnetic and ferroelectric) phase with magnetization [> or =0.5 microB/formula unit (f.u.)] and electric polarization (> or =0.2 microC/cm2) both along the c axis. Exchange striction working between adjacent Fe3+ and Dy3+ layers with the respective layered antiferromagnetic components is proposed as the origin of the ferroelectric polarization in the multiferroic phase.  相似文献   

17.
祁建敏  周林  蒋世伦  彭太平 《中国物理 C》2010,34(12):1860-1865
The magnetic proton recoil(MPR)spectrometer is a novel diagnostic instrument with high perfor-mance for measurements of neutron spectra in inertial confinement fusion(ICF)experiments and high power fusion devices.A compact MPR-type spectrometer dedicated to the research of pulsed deuterium-tritium(DT)neutron spectroscopy of special experimental conditions is currently under design.Analyses of the main parameters and performance of the magnetic analysis system through 3-D particle transport calculations and MonteCarlo simulations and calibration of the system performance as a test using CR-39 solid track detector and α particle from 239pu and 226Ra radioactive sources are presented in this paper.The results indicate that the magnetic analysis system will achieve a detection efficiency level of 10-5-10-4 at an energy resolution of 1.5%-2.1%,and fulfills the design goals of the spectrometer.  相似文献   

18.
s The geometrical structures of Cd0.75TM0.25Se (TM = Ti, V, Cr and Mn) are optimized, and then their electric and magnetic properties are investigated by performing first-principles calculations within the generalized gradient approximation for the exchange-correlation function based on density functional theory. Cd0.75TM0.25Se (TM =Ti and V) are found to have high spin-polarization near 100% at the Fermi level. Cd0.75TM0.25Se (TM = Cr and Mn) are half-metallic ferromagnets whose spin-polarization at the Fermi level is absolutely +100%. The supercell magnetic moments of Cd0.75Cr0.25Se and Cdo.75Mno.25Se are 4.00 and 5.00 μB, which arise mainly from Cr-ions and Mnions, respectively. The half-metallicity of Cdo.75Cro.25Se is more stable than that of Cd0.75Mn0.25Se. The electronic structures of Cr-ions and Mn-ions are Cr eg2↑t22g↑ and Mn e2 3 ↑t23g↑, respectively.  相似文献   

19.
The vibrating wire alignment technique is a method which, by measuring the spatial distribution of a magnetic field, can achieve very high alignment accuracy. The vibrating wire alignment technique can be applied to fiducializing magnets and the alignment of accelerator straight section components, and it is a necessary supplement to conventional alignment methods. This article gives a systematic summary of the vibrating wire alignment technique, including vibrating wire model analysis, system frequency calculation, wire sag calculation, and the relation between wire amplitude and magnetic induction intensity. On the basis of this analysis, this article outlines two existing alignment methods, one based on magnetic field measurement and the other on amplitude and phase measurements. Finally, some basic experimental issues are discussed.  相似文献   

20.
Recent measurements of nucleon resonance transition form factors with CLAS at Jefferson Lab are discussed. The new data confirm the assertion of the symmetric constituent quark model of the Roper as the first radial excitation of the nucleon. The data on high Q2 nπ+ production better constrain the branching ratios liNK and [3Nn. For the first time, the longitudinal transition amplitude to the S11(1535) was extracted from the nπ+ data. Also, new results on the transition amplitudes for the D13(1520) resonance are presented showing a rapid transition from helicity 3/2 dominance seen at the real photon point to helicty 1/2 dominance at higher Q2. I also discuss the status of the search for new excited nucleon states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号