首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High-performance Al Ga N/Ga N high electron mobility transistors(HEMTs) grown on silicon substrates by metal–organic chemical-vapor deposition(MOCVD) with a selective non-planar n-type Ga N source/drain(S/D) regrowth are reported. A device exhibited a non-alloyed Ohmic contact resistance of 0.209 Ω·mm and a comprehensive transconductance(gm) of 247 m S/mm. The current gain cutoff frequency f T and maximum oscillation frequency f MAX of 100-nm HEMT with S/D regrowth were measured to be 65 GHz and 69 GHz. Compared with those of the standard Ga N HEMT on silicon substrate, the fTand fMAXis 50% and 52% higher, respectively.  相似文献   

2.
A high performance InAlN/GaN high electron mobility transistor(HEMT) at low voltage operation(6–10 V drain voltage) has been fabricated. An 8 nm InAlN barrier layer is adopted to generate large 2 DEG density thus to reduce sheet resistance. Highly scaled lateral dimension(1.2 μm source–drain spacing) is to reduce access resistance. Both low sheet resistance of the InAlN/GaN structure and scaled lateral dimension contribute to an high extrinsic transconductance of 550 mS/mm and a large drain current of 2.3 A/mm with low on-resistance(Ron) of 0.9 ?·mm. Small signal measurement shows an f_T/f_(max) of 131 GHz/196 GHz. Large signal measurement shows that the InAlN/GaN HEMT can yield 64.7% –52.7%(V_(ds)= 6–10 V) power added efficiency(PAE) associated with 1.6–2.4 W/mm output power density at 8 GHz. These results demonstrate that GaN-based HEMTs not only have advantages in the existing high voltage power and high frequency rf field, but also are attractive for low voltage mobile compatible rf applications.  相似文献   

3.
A C-band high efficiency and high gain two-stage power amplifier based on Al Ga N/Ga N high electron mobility transistor(HEMT) is designed and measured in this paper. The input and output impedances for the optimum power-added efficiency(PAE) are determined at the fundamental and 2nd harmonic frequency( f0 and 2 f0). The harmonic manipulation networks are designed both in the driver stage and the power stage which manipulate the second harmonic to a very low level within the operating frequency band. Then the inter-stage matching network and the output power combining network are calculated to achieve a low insertion loss. So the PAE and the power gain is greatly improved. In an operation frequency range of 5.4 GHz–5.8 GHz in CW mode, the amplifier delivers a maximum output power of 18.62 W, with a PAE of 55.15% and an associated power gain of 28.7 d B, which is an outstanding performance.  相似文献   

4.
We report on the performance of La203/InA1N/GaN metal-oxide-semiconductor high electron mobility transistors (MOSHEMTs) and InA1N/GaN high electron mobility transistors (HEMTs). The MOSHEMT presents a maximum drain current of 961 mA/mm at Vgs = 4 V and a maximum transconductance of 130 mS/mm compared with 710 mA/mm at Vgs = 1 V and 131 mS/mm for the HEMT device, while the gate leakage current in the reverse direction could be reduced by four orders of magnitude. Compared with the HEMT device of a similar geometry, MOSHEMT presents a large gate voltage swing and negligible current collapse.  相似文献   

5.
孙云飞  孙建东  张晓渝  秦华  张宝顺  吴东岷 《中国物理 B》2012,21(10):108504-108504
An optimized micro-gated terahertz detector with novel triple resonant antenna is presented.The novel resonant antenna operates at room temperature and shows more than a 700% increase in photocurrent response compared to the conventional bowtie antenna.In finite-difference-time-domain simulations,we found the performance of the self-mixing GaN/AlGaN high electron mobility transistor detector is mainly dependent on the parameters L gs(the gap between the gate and the source/drain antenna) and L w(the gap between the source and drain antenna).With the improved triple resonant antenna,an optimized micrometer-sized AlGaN/GaN high electron mobility transistor detector can achieve a high responsivity of 9.45×102 V/W at a frequency of 903 GHz at room temperature.  相似文献   

6.
In this paper, two-dimensional(2D) transient simulations of an Al Ga N/Ga N high-electron-mobility transistor(HEMT)are carried out and analyzed to investigate the current collapse due to trapping effects. The coupling effect of the trapping and thermal effects are taken into account in our simulation. The turn-on pulse gate-lag transient responses with different quiescent biases are obtained, and the pulsed current–voltage(I–V) curves are extracted from the transients. The experimental results of both gate-lag transient current and pulsed I–V curves are reproduced by the simulation, and the current collapse due to the trapping effect is explained from the view of physics based on the simulation results. In addition, the results show that bulk acceptor traps can influence the gate-lag transient characteristics of Al Ga N/Ga N HEMTs besides surface traps and that the thermal effect can accelerate the emission of captured electrons for traps. Pulse transient simulation is meaningful in analyzing the mechanism of dynamic current collapse, and the work in this paper will benefit the reliability study and model development of Ga N-based devices.  相似文献   

7.
张雪锋  王莉  刘杰  魏崃  许键 《中国物理 B》2013,22(1):17202-017202
Electrical properties of an AlInN/GaN high-electron mobility transistor (HEMT) on a sapphire substrate are investi-gated in a cryogenic temperature range from 295 K down to 50 K. It is shown that drain saturation current and conductance increase as transistor operation temperature decreases. A self-heating effect is observed over the entire range of temperature under high power consumption. The dependence of channel electron mobility on electron density is investigated in detail. It is found that aside from Coulomb scattering, electrons that have been pushed away from the AlInN/GaN interface into the bulk GaN substrate at a large reverse gate voltage are also responsible for the electron mobility drop with the decrease of electron density.  相似文献   

8.
杨丽媛  薛晓咏  张凯  郑雪峰  马晓华  郝跃 《中国物理 B》2012,21(7):77304-077304
Self-heating in multifinger AlGaN/GaN high electron mobility transistor (HEMT) is investigated by micro-Raman spectroscopy. The device temperature is probed on the die as a function of applied bias. The operating temperature of AlGaN/GaN HEMT is estimated from the calibration curve of passively heated AlGaN/GaN structure. A linear increase of junction temperature is observed when direct current dissipated power is increased. When the power dissipation is 12.75 W at a drain voltage of 15 V, a peak temperature of 69.1 ℃ is observed at the gate edge on the drain side of the central finger. The position of the highest temperature corresponds to the high-field region at the gate edge.  相似文献   

9.
Superior characteristics of Al Ga N-channel metal-insulator-semiconductor(MIS) high electron mobility transistors(HEMTs) at high temperatures are demonstrated in detail. The temperature coefficient of the maximum saturation drain current for the Al GaN-channel MIS HEMT can be reduced by 50% compared with the Ga N-channel HEMT. Moreover, benefiting from the better suppression of gate current and reduced leakage current in the buffer layer, the Al Ga N-channel MIS HEMT demonstrates an average breakdown electric field of 1.83 MV/cm at25℃ and 1.06 MV/cm at 300℃, which is almost 2 times and 3 times respectively larger than that of the reference Ga N-channel HEMT. Pulsed mode analyses suggest that the proposed device suffers from smaller current collapse when the temperature reaches as high as 300℃.  相似文献   

10.
Al0.85In0.15N//AlN/GaN metal-oxide-semiconductor high electron mobility transistors (MOS-HEMTs) employing a 3-nm ultra-thin atomic-layer deposited (ALD) Al2O3 gate dielectric layer are reported. Devices with 0.6μm gate lengths exhibit an improved maximum drain current density of 1227mA/mm at a gate bias of 3 V, a peak transeonductance of 328mS/mm, a cutoff frequency fr of 16 GHz, a maximum frequency of oscillation fmax of 45 GHz, as well as significant gate leakage suppression in both reverse and forward directions, compared with the conventionM Al0.85In0.15N/AlN/GaN HEMT. Negligible C - V hysteresis, together with a smaller pinch-off voltage shift, is observed, demonstrating few bulk traps in the dielectric and high quality of the Al2O3/AIInN interface, it is most notable that not only the transconductance profile of the MOS-HEMT is almost the same as that of the conventional HEMT with a negative shift, but also the peak transconduetance of the MOS-HEMT is increased slightly. It is an exeitin~ inwrovement in the transconductance performance.  相似文献   

11.
Self-heating in a multifinger AlGaN/GaN high electron mobility transistor (HEMT) is investigated by micro-Raman spectroscopy. The device temperature is probed on the die as a function of applied bias. The operating temperature of the AlGaN/GaN HEMT is estimated from the calibration curve of a passively heated AlGaN/GaN structure. A linear increase of junction temperature is observed when direct current dissipated power is increased. When the power dissipation is 12.75 W at a drain voltage of 15 V, a peak temperature of 69.1°C is observed at the gate edge on the drain side of the central finger. The position of the highest temperature corresponds to the high-field region at the gate edge.  相似文献   

12.
A novel PMMA/PMGI/ZEP520 trilayer resist electron beam lithograph (EBL) technology is successfully developed and used to fabricate the 150 nm gate-length In0.7Ga0.3As/In0.52Al0.48As Pseudomorphic HEMT on an InP substrate, of which the material structure is successfully designed and optimized. A perfect profile of T?gate is successfully obtained. These fabricated devices demonstrate excellent dc and rf characteristics: the transconductance Gm, maximum saturation drain?to-source current IDSS, threshold voltage VT, maximum current gain frequency fT derived from h21, maximum frequency of oscillation derived from maximum available power gain/maximum stable gain and from unilateral power?gain of metamorphic InGaAs/InAlAs high electron mobility transistors (HEMTs) are 470 mS/mm, 560 mA/mm, -1.0 V, 76 GHz, 135 GHz and 436 GHz, respectively. The excellent high frequency performances promise the possibility of metamorphic HEMTs for millimeter-wave applications.  相似文献   

13.
刘宇安  庄奕琪  马晓华  杜鸣  包军林  李聪 《中国物理 B》2014,23(2):20701-020701
In this work, we present a theoretical and experimental study on the drain current 1/f noise in the AIGaN/GaN high electron mobility transistor (HEMT). Based on both mobility fluctuation and carrier number fluctuation in a two- dimensional electron gas (2DEG) channel of AlGaN/GaN HEMT, a unified drain current 1/f noise model containing a piezoelectric polarization effect and hot carrier effect is built. The drain current 1/f noise induced by the piezoelectric polarization effect is distinguished from that induced by the hot carrier effect through experiments and simulations. The simulation results are in good agreement with the experimental results. Experiments show that after hot carrier injection, the drain current 1/f noise increases four orders of magnitude and the electrical parameter degradation Agm/gm reaches 54.9%. The drain current 1/f noise degradation induced by the piezoelectric effect reaches one order of magnitude; the electrical parameter degradation Agm/gm is 11.8%. This indicates that drain current 1/f noise of the GaN-based HEMT device is sensitive to the hot carrier effect and piezoelectric effect. This study provides a useful reliability characterization tool for the A1GaN/GaN HEMTs.  相似文献   

14.
In this paper, a new current expression based on both the direct currect(DC) characteristics of the AlGaN/GaN high election mobility transistor(HEMT) and the hyperbolic tangent function tanh is proposed, by which we can describe the kink effect of the AlGaN/GaN HEMT well. Then, an improved EEHEMT model including the proposed current expression is presented. The simulated and measured results of I–V, S-parameter, and radio frequency(RF) large-signal characteristics are compared for a self-developed on-wafer AlGaN/GaN HEMT with ten gate fingers each being 0.4-μm long and 125-μm wide(Such an AlGaN/GaN HEMT is denoted as AlGaN/GaN HEMT(10 × 125 μm)). The improved large signal model simulates the I–V characteristic much more accurately than the original one, and its transconductance and RF characteristics are also in excellent agreement with the measured data.  相似文献   

15.
In this paper, A12O3 ultrathin film used as the surface passivation layer for Al Ga N/Ga N high electron mobility transistor(HEMT) is deposited by thermal atomic layer deposition(ALD), thereby avoiding plasma-induced damage and erosion to the surface. A comparison is made between the surface passivation in this paper and the conventional plasma enhanced chemical vapor deposition(PECVD) Si N passivation. A remarkable reduction of the gate leakage current and a significant increase in small signal radio frequency(RF) performance are achieved after applying Al2O3+BCB passivation.For the Al2O3+BCB passivated device with a 0.7 μm gate, the value of f max reaches up to 100 GHz, but it decreases to 40 GHz for Si N HEMT. The f max/ f t ratio(≥ 4) is also improved after Al2O3+BCB passivation. The capacitance–voltage(C–V) measurement demonstrates that Al2O3+BCB HEMT shows quite less density of trap states(on the order of magnitude of 1010cm-2) than that obtained at commonly studied Si N HEMT.  相似文献   

16.
We report on the high breakdown performance of AlGaN/GaN high electron mobility transistors (HEMTs) grown on 4-inch silicon substrates. The HEMT structure including three Al-content step-graded AlGaN transition layers has a total thickness of 2.7 μm. The HEMT with a gate width WG of 300 μm acquires a maximum off-state breakdown voltage (BV) of 550 V and a maximum drain current of 527 mA/mm at a gate voltage of 2 V. It is found that BV is improved with the increase of gate-drain distance LGD until it exceeds 8 μm and then BV is tended to saturation. While the maximum drain current drops continuously with the increase of LGD. The HEMT with a WG of 3 mm and a LGD of 8 μm obtains an off-state BV of 500 V. Its maximum leakage current is just 13 μA when the drain voltage is below 400 V. The device exhibits a maximum output current of 1 A with a maximum transconductance of 242 mS.  相似文献   

17.
In this paper, a new current expression based on both the direct currect (DC) characteristics of the A1GaN/GaN high election mobility transistor (HEMT) and the hyperbolic tangent function tanh is proposed, by which we can describe the kink effect of the A1GaN/GaN HEMT well. Then, an improved EEHEMT model including the proposed current expression is presented. The simulated and measured results of Ⅰ-Ⅴ, S-parameter, and radio frequency (RF) large-signal characteristics are compared for a self-developed on-wafer A1GaN/GaN HEMT with ten gate fingers each being 0.4-μm long and 125-p-m wide (Such an A1GaN/GaN HEMT is denoted as A1GaN/GaN HEMT (10 × 125 μm)). The improved large signal model simulates the Ⅰ-Ⅴ characteristic much more accurately than the original one, and its transconductance and RF characteristics are also in excellent agreement with the measured data.  相似文献   

18.
We report on the performance of La2O3/InAlN/GaN metal-oxide-semiconductor high electron mobility transistors(MOSHEMTs) and InAlN/GaN high electron mobility transistors(HEMTs).The MOSHEMT presents a maximum drain current of 961 mA/mm at Vgs = 4 V and a maximum transconductance of 130 mS/mm compared with 710 mA/mm at Vgs = 1 V and 131 mS/mm for the HEMT device,while the gate leakage current in the reverse direction could be reduced by four orders of magnitude.Compared with the HEMT device of a similar geometry,MOSHEMT presents a large gate voltage swing and negligible current collapse.  相似文献   

19.
In this paper, 0.15-μm gate-length In0.52Al0.48As/In0.53Ga0.47As InP-based high electron mobility transistors (HEMTs) each with a gate-width of 2×50 μm are designed and fabricated. Their excellent DC and RF characterizations are demonstrated. Their full channel currents and extrinsic maximum transconductance (gm,max) values are measured to be 681 mA/mm and 952 mS/mm, respectively. The off-state gate-to-drain breakdown voltage (BVGD) defined at a gate current of-1 mA/mm is 2.85 V. Additionally, a current-gain cut-off frequency (fT) of 164 GHz and a maximum oscillation frequency (fmax) of 390 GHz are successfully obtained; moreover, the fmax of our device is one of the highest values in the reported 0.15-μm gate-length lattice-matched InP-based HEMTs operating in a millimeter wave frequency range. The high gm,max, BVGD, fmax, and channel current collectively make this device a good candidate for high frequency power applications.  相似文献   

20.
冯倩  李倩  邢韬  王强  张进成  郝跃 《中国物理 B》2012,21(6):67305-067305
We report on the performance of La2O3/InAlN/GaN metal-oxide-semiconductor high electron mobility transistors(MOSHEMTs) and InAlN/GaN high electron mobility transistors(HEMTs).The MOSHEMT presents a maximum drain current of 961 mA/mm at Vgs = 4 V and a maximum transconductance of 130 mS/mm compared with 710 mA/mm at Vgs = 1 V and 131 mS/mm for the HEMT device,while the gate leakage current in the reverse direction could be reduced by four orders of magnitude.Compared with the HEMT device of a similar geometry,MOSHEMT presents a large gate voltage swing and negligible current collapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号