首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The behaviors of a system that alternates between the R¨ossler oscillator and Chua's circuit is investigated to explore the influence of the switches on the dynamical evolution.Switches related to the state variables are introduced,upon which a typical switching dynamical model is established.Bifurcation sets of the subsystems are derived via analysis of the related equilibrium points,which divide the parameters into several regions corresponding to different types of attractors.The dynamics behave typically in period orbits with the variation of the parameters.The focus/cycle periodic switching phenomenon is explored in detail to present the mechanism of the movement.The period-doubling bifurcation to chaos can be observed via the doubling increase of the turning points related to the switches.Furthermore,period-decreasing sequences have been obtained,which can be explained by the variation of the eigenvalues associated with the equilibrium points of the subsystems.  相似文献   

2.
We propose a controllable high-efficiency electrostatic surface trap for cold polar molecules on a chip by using two insulator-embedded charged rings and a grounded conductor plate. We calculate Stark energy structure pattern of ND3 molecules in an external electric field using the method of matrix diagonalization. We analyze how the voltages that are applied to the ring electrodes affect the depth of the efficient well and the controllability of the distance between the trap center and the surface of the chip. To obtain a better understanding, we simulate the dynamical loading and trapping processes of ND3 molecules in a |J, KM = |1,-1 state by using classical Monte–Carlo method. Our study shows that the loading efficiency of our trap can reach ~ 88%. Finally, we study the adiabatic cooling of cold molecules in our surface trap by linearly lowering the potential-well depth(i.e., lowering the trapping voltage), and find that the temperature of the trapped ND3 molecules can be adiabatically cooled from 34.5 m K to ~ 5.8 m K when the trapping voltage is reduced from-35 k V to-3 k V.  相似文献   

3.
Highly c-axis oriented un-doped zinc oxide(Zn O) thin films, each with a thickness of ~ 100 nm, are deposited on Si(001) substrates by pulsed electron beam deposition at a temperature of ~ 320℃, followed by annealing at 650℃ in argon in a strong magnetic field. X-ray photoelectron spectroscopy(XPS), positron annihilation analysis(PAS), and electron paramagnetic resonance(EPR) characterizations suggest that the major defects generated in these Zn O films are oxygen vacancies. Photoluminescence(PL) and magnetic property measurements indicate that the room-temperature ferromagnetism in the un-doped Zn O film originates from the singly ionized oxygen vacancies whose number depends on the strength of the magnetic field applied in the thermal annealing process. The effects of the magnetic field on the defect generation in the Zn O films are also discussed.  相似文献   

4.
The number of return photons from sodium laser beacon(SLB) greatly suffers down-pumping, recoil, and geomagnetic field when the long pulse laser with circular polarization interacts with sodium atoms in the mesosphere. Considering recoil and down-pumping effects on the number of return photons from SLB, the spontaneous radiation rates are obtained by numerical computations and fittings. Furthermore, combining with the geomagnetic field effects, a new expression is achieved for calculating the number of return photons. By using this expression and considering the stochastic distribution of laser intensity in the mesosphere under different turbulence models for atmosphere, the number of return photons excited by the narrow-band single mode laser and that by the narrow-band three-mode laser are respectively calculated. The results show that the narrow-band three-mode laser with a specific spectrum structure has a higher spontaneous radiation rate and more return photons than a narrow-band single mode laser. Of note, the effect of the atmospheric turbulence on the number of return photons is remarkable. Calculation results indicate that the number of return photons under the HV5/7 model for atmospheric turbulence is much higher than that under the Greenwood and Mod HV models.  相似文献   

5.
The particle sizes and porosities of simulated pore structures are probed by terahertz time-domain spectroscopy.A double-peak time-domain spectrum phenomenon is observed when the terahertz(THz) pulses illuminated a pore and a particle. The amplitudes of the two peaks depend strongly and monotonically on the particle size and porosity. A model is used to study the phenomenon, and the computational results agreed with the experimental measurements. These measurements indicate the terahertz spectroscopic behaviors of pores and particles, suggesting that terahertz spectroscopy can be used as a noncontact probe of porosity.  相似文献   

6.
Considering mechanical limitation or device restriction in practical application, this paper investigates impulsive stabilization of nonlinear systems with impulsive gain error. Compared with the existing impulsive analytical approaches,the proposed impulsive control method is more practically applicable, which includes control gain error with an acceptable boundary. A sufficient criterion for global exponential stability of an impulsive control system is derived, which relaxes the condition for precise impulsive gain efficiently. The effectiveness of the proposed method is confirmed by theoretical analysis and numerical simulation based on Chua's circuit.  相似文献   

7.
An analysis is carried out for dual solutions of the boundary layer flow of Maxwell fluid over a permeable shrinking sheet. In the investigation, a constant wall mass transfer is considered. With the help of similarity transformations, the governing partial differential equations(PDEs) are converted into a nonlinear self-similar ordinary differential equation(ODE). For the numerical solution of transformed self-similar ODE, the shooting method is applied. The study reveals that the steady flow of Maxwell fluid is possible with a smaller amount of imposed mass suction compared with the viscous fluid flow. Dual solutions for the velocity distribution are obtained. Also, the increase of Deborah number reduces the boundary layer thickness for both solutions.  相似文献   

8.
付丽  郭永权 《中国物理 B》2014,(12):469-475
Ce-doped Cu In Te2(CICT) semiconducting compounds are successfully synthesized. The phase structures, optical,and electric properties are investigated using powder X-ray diffraction(XRD), field emission scanning electron microscopy(FESEM), X-ray photoelectron spectrometer(XPS), Raman spectrometer, ultraviolet and visible spectrophotometer(UVVis), and a standard four-probe method. Cu In1-xCex Te2 crystallizes into a tetragonal structure with predominant orientation along the [112] direction. The lattice parameters are a = 6.190(6) A–6.193(0) A and c = 12.406(5) A–12.409(5) A. Ce prefers to occupy the 4b crystal position. According to the analysis of XPS spectra, Ce shows the mixture of valences 4+and 3+. Raman spectra reveal that the photon vibrating model in the CICT follows A1 mode in a wavenumber range of123 cm^-1–128 cm^-1. UV-Vis spectra show that the band gap Eg values before and after 0.1 mole Ce doped into Cu In Te2 are 1.28 e V and 1.16 e V, respectively. It might be due to the mixture of valences for Ce. Ce doped into Cu In Te2 still shows the semiconductor characteristics.  相似文献   

9.
The electronic structures and optical properties of N-doped Zn O bulks and nanotubes are investigated using the firstprinciples density functional method. The calculated results show that the main optical parameters of Zn O bulks are isotropic(especially in the high frequency region), while Zn O nanotubes exhibit anisotropic optical properties. N doping results show that Zn O bulks and nanotubes present more obvious anisotropies in the low-frequency region. Thereinto, the optical parameters of N-doped Zn O bulks along the [100] direction are greater than those along the [001] direction, while for N-doped nanotubes, the variable quantities of optical parameters along the [100] direction are less than those along the[001] direction. In addition, refractive indexes, electrical conductivities, dielectric constants, and absorption coefficients of Zn O bulks and nanotubes each contain an obvious spectral band in the deep ultraviolet(UV)(100 nm~ 300 nm). For each of N-doped Zn O bulks and nanotubes, a spectral peak appears in the UV and visible light region, showing that N doping can broaden the application scope of the optical properties of Zn O.  相似文献   

10.
In this paper, superwide-angle acoustic propagations above the critical angles of the Snell law in liquid–solid superlattice are investigated. Incident waves above the critical angles of the Snell law usually inevitably induce total reflection.However, incident waves with big oblique angles through the liquid–solid superlattice will produce a superwide angle transmission in a certain frequency range so that total reflection does not occur. Together with the simulation by finite element analysis, theoretical analysis by using transfer matrix method suggests the Bragg scattering of the Lamb waves as the physical mechanism of acoustic wave super-propagation far beyond the critical angle. Incident angle, filling fraction,and material thickness have significant influences on propagation. Superwide-angle propagation phenomenon may have potential applications in nondestructive evaluation of layered structures and controlling of energy flux.  相似文献   

11.
A relativistic Mie-type potential for spin-1/2 particles is studied. The Dirac Hamiltonian contains a scalar S(r) and a vector V(r) Mie-type potential in the radial coordinates, as well as a tensor potential U(r) in the form of Coulomb potential. In the pseudospin(p-spin) symmetry setting Σ = Cps and Δ = V(r), an analytical solution for exact bound states of the corresponding Dirac equation is found. The eigenenergies and normalized wave functions are presented and particular cases are discussed with any arbitrary spin–orbit coupling number κ. Special attention is devoted to the caseΣ = 0 for which p-spin symmetry is exact. The Laplace transform approach(LTA) is used in our calculations. Some numerical results are obtained and compared with those of other methods.  相似文献   

12.
Cellular aging can result in deterioration of electrical coupling, the extension of the action potential duration, and lower excitability of the cell. Those factors are introduced into the Greenberg–Hastings cellular automaton model and the effects of the cellular aging on the dynamics of spiral waves are studied. The numerical results show that a 50% reduction of the coupling strength of aging cells has a little influence on spiral waves. If the coupling strength of aging cells equals zero, the ability for the medium to maintain spiral waves will be reduced by approximately 50% when the aging cell ratio increases from 0 to 0.5, where the reduction of cell excitability plays a major role in inducing disappearance of spiral waves. When the relevant parameters are properly chosen, the cellular aging can lead to the meandering of spiral waves,the emergence of the binary spiral waves, and even the disappearance of spiral waves via the stopping rotation or shrinkage of wave. Physical mechanisms of the above phenomena are analyzed briefly.  相似文献   

13.
To improve the security of the smart grid, quantum key distribution(QKD) is an excellent choice. The rapid fluctuations on the power aerial optical cable and electromagnetic disturbance in substations are two main challenges for implementation of QKD. Due to insensitivity to birefringence of the channel, the stable phase-coding Faraday–Michelson QKD system is very practical in the smart grid. However, the electromagnetic disturbance in substations on this practical QKD system should be considered. The disturbance might change the rotation angle of the Faraday mirror, and would introduce an additional quantum bit error rate(QBER). We derive the new fringe visibility of the system and the additional QBER from the electromagnetic disturbance. In the worst case, the average additional QBER only increases about 0.17% due to the disturbance, which is relatively small to normal QBER values. We also find the way to degrade the electromagnetic disturbance on the QKD system.  相似文献   

14.
A higher-order finite-difference time-domain(HO-FDTD) in the spherical coordinate is presented in this paper. The stability and dispersion properties of the proposed scheme are investigated and an air-filled spherical resonator is modeled in order to demonstrate the advantage of this scheme over the finite-difference time-domain(FDTD) and the multiresolution time-domain(MRTD) schemes with respect to memory requirements and CPU time. Moreover, the Berenger's perfectly matched layer(PML) is derived for the spherical HO-FDTD grids, and the numerical results validate the efficiency of the PML.  相似文献   

15.
In this paper, we introduce new invariant sets, and the invariant sets and exact solutions to general reactiondiffusion equation are discussed. It is shown that there exist a class of exact solutions to the equations that belong to the invariant sets.  相似文献   

16.
First principles calculations are preformed to systematically investigate the electronic structures, elastic and thermodynamic properties of the monoclinic and orthorhombic phases of Si C2N4 under pressure. The calculated structural parameters and elastic moduli are in good agreement with the available theoretical values at zero pressure. The elastic constants of the two phases under pressure are calculated by stress–strain method. It is found that both phases satisfy the mechanical stability criteria within 60 GPa. With the increase of pressure, the degree of the anisotropy decreases rapidly in the monoclinic phase, whereas it remains almost constant in the orthorhombic phase. Furthermore, using the hybrid density-functional theory, the monoclinic and orthorhombic phases are found to be wide band-gap semiconductors with band gaps of about 2.85 e V and 3.21 e V, respectively. The elastic moduli, ductile or brittle behaviors, compressional and shear wave velocities as well as Debye temperatures as a function of pressure in both phases are also investigated in detail.  相似文献   

17.
A new modified Angelov current–voltage characteristic model equation is proposed to improve the drain–source current(Ids) simulation of an Al Ga N/Ga N-based(gallium nitride) high electron mobility transistor(Al Ga N/Ga N-based HEMT) at high power operation. Since an accurate radio frequency(RF) current simulation is critical for a correct power simulation of the device, in this paper we propose a method of Al Ga N/Ga N high electron mobility transistor(HEMT)nonlinear large-signal model extraction with a supplemental modeling of RF drain–source current as a function of RF input power. The improved results of simulated output power, gain, and power added efficiency(PAE) at class-AB quiescent bias of Vgs =-3.5 V, Vds= 30 V with a frequency of 9.6 GHz are presented.  相似文献   

18.
The temperature dependence of the photoluminescence(PL) from Mn S/Zn S core–shell quantum dots is investigated in a temperature range of 8 K–300 K. The orange emission from the ^4T1→^6A1transition of Mn^2+ions and the blue emission related to the trapped surface state are observed in the Mn S/Zn S core–shell quantum dots. As the temperature increases, the orange emission is shifted toward a shorter wavelength while the blue emission is shifted towards the longer wavelength. Both the orange and blue emissions reduce their intensities with the increase of temperature but the blue emission is quenched faster. The temperature-dependent luminescence intensities of the two emissions are well explained by the thermal quenching theory.  相似文献   

19.
In this paper, a new type of conserved quantity indirectly deduced from the Mei symmetry for relativistic mechanical system in phase space is studied. The definition and the criterion of the Mei symmetry for the system are given. The condition for existence and the form of the new conserved quantity are obtained. Finally, an example is given to illustrate the application of the results.  相似文献   

20.
Line-of-sight tunable-diode-laser absorption spectroscopy(LOS-TDLAS) with multiple absorption lines is introduced for non-uniform temperature measurement. Temperature binning method combined with Gauss–Seidel iteration method is used to measure temperature probability distribution function(PDF) along the line-of-sight(LOS). Through 100 simulated measurements, the variation of measurement accuracy is investigated with the number of absorption lines, the number of temperature bins and the magnitude of temperature non-uniformity. A field model with 2-T temperature distribution and15 well-selected absorption lines are used for the simulation study. The Gauss–Seidel iteration method is discussed for its reliability. The investigation result about the variation of measurement accuracy with the number of temperature bins is different from the previous research results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号