首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The absorption spectra and the refractive index changes are calculated theoretically for an exciton in a core/shell quantum dot. The advantage of our methodology is that one can investigate the influence of the repulsive core by varying two parameters in the confinement potential. The dimensionality effect of exciton quantum dots on the optical absorptions has been studied. It has been found that in the same regime, the optical absorption intensities of excitons are much smaller for the core/shell quantum dots than for the two-dimensional quantum rings. The linear and the nonlinear optical absorption coefficients and refractive index changes have been examined with the change of the confinement potential. The results show that the optical absorptions and the refractive index changes are strongly affected by the repulsive core of core/shell quantum dots. Moreover, the calculated results also reveal that as the inner radius increases, the peak values of the absorption coefficients and the refractive index changes of an exciton will show the optical Aharonov–Bohm oscillation in core/shell quantum dots.  相似文献   

2.
We investigate the growth of strain-engineered low-density 1hAs bilayer quantum dots (BQDs) on GaAs by molecular beam epitaxy. Owing to increasing dot size and In composition of the upper QDs, low-density BQDs in a GaAs matrix with an emission wavelength up to 1.4 μm at room temperature are achieved. Such a wavelength is larger than that of conventional QDs in a GaAs matrix (generally of about 1.3μm). The optical properties of the BQDs are sensitive to annealing temperature used after spacer layer growth. Significant decrease of integrated PL intensity is observed as the annealing temperature increases. At 10 K, single photon emission from the BQDs with wavelength around 1.3μm is observed.  相似文献   

3.
The photostability of a colloidal single photon emitter in near-infrared regime at room temperature is investigated.The fluorescence lifetime, blinking phenomenon, and anti-bunching effect of a single CdTeSe/ZnS quantum dot with an emission wavelength of 800 nm at room temperature are studied. The second-order correlation function at zero delay time is much smaller than 0.1, which proves that the emission from single quantum dots at 800 nm is a highly pure single-photon source. The effects of th...  相似文献   

4.
In this paper, core–shell quantum dots(QDs) with two polar surface functional groups(ZnSe/ZnS–COOH QDs and ZnSe/ZnS–NH_2 QDs) are synthesized in an aqueous phase. Photoluminescence(PL) and absorption spectra clearly indicate luminescence down-shifting(LDS) properties. On the basis of QDs, surface functional group multilayer LDS films(MLDSs) are fabricated through an electrostatic layer-by-layer(LBL) self-assembly method. The PL intensity increases linearly with the number of bilayers, showing a regular and uniform film growth. When the M-LDS is placed on the surface of a Si-based solar cell as an optical conversion layer for the first time, the external quantum efficiency(EQE) and shortcircuit current density(Jsc) notably increases for the LDS process. The EQE response improves in a wavelength region extending from the UV region to the blue region, and its maximum increase reaches more than 15% between 350 nm and 460 nm.  相似文献   

5.
We have investigated the temperature dependence of the photoluminescence (PL) spectrum of self-organized InAs/GaAs quantum dots. A distinctive double-peak feature of the PL spectra from quantum dots has been observed, and a bimodal distribution of dot sizes has also been confirmed by scanning tunneling microscopy image for uncapped sample. The power-dependent PL study demonstrates that the distinctive PL emission peaks are associated with the ground-state emission of islands in different size branches. The temperature-dependent PL study shows that the PL quenching temperature for different dot families is different. Due to lacking of the couple between quantum dots, an unusual temperature dependence of the linewidth and peak energy of the dot ensemble photoluminescence has not been observed. In addition, we have tuned the emission wavelength of InAs QDs to 1.3 μm at room temperature.  相似文献   

6.
We report on the lasing characteristics of a two-color InAs/InP quantum dots(QDs)laser at a low tem-perature.Two lasing peaks with a tunable gap are simultaneously observed.At a low temperature of 80 K,a tunable range greater than a 20-nm wavelength is demonstrated by varying the injection current from 30 to 500 mA.Under a special condition,we even observe three lasing peaks,which are in contrast to those observed at room temperature.The temperature coefficient of the lasing wavelength was obtained for the two colors in the 80?280 K temperature range,which is lower than that of the reference quantum well(QW)laser working in the same wavelength region.  相似文献   

7.
Full quantum mechanical calculations are performed to determine the broadening in the far wings of the cesium D_1 and D_2 line shapes arising from elastic collisions of Cs atom with inert helium atoms. The potential energy curves of the low-lying CsHe molecular states, as well as the related transition dipole moments, are carefully computed from ab initio methods based on state-averaged complete active space self-consistent field–multireference configuration interaction(SACASSCF–MRCI) calculations, involving the spin–orbit effect, and taking into account the Davidson and BSSE corrections.The absorption and emission reduced coefficients are determined in the temperature and wavelength ranges of 323–3000 K and 800–1000 nm, respectively. Both profiles of the absorption and the emission are dominated by the free–free transitions,and exhibit a satellite peak in the blue wing near the wavelength 825 nm, attributed to B~2Σ_(1/2)~+→ X~2Σ_(1/2)~+/transitions. The results are in good agreement with previous experimental and theoretical works.  相似文献   

8.
The ionized dopants, working as quantum dots in silicon nanowires, exhibit potential advantages for the development of atomic-scale transistors. We investigate single electron tunneling through a phosphorus dopant induced quantum dots array in heavily n-doped junctionless nanowire transistors. Several subpeaks splittings in current oscillations are clearly observed due to the coupling of the quantum dots at the temperature of 6 K. The transport behaviors change from resonance tunneling to hoping conduction with increased temperature. The charging energy of the phosphorus donors is approximately 12.8 meV. This work helps clear the basic mechanism of electron transport through donor-induced quantum dots and electron transport properties in the heavily doped nanowire through dopant engineering.  相似文献   

9.
Luminescence intensity of CdS:Mn/ZnS core-shell quantum dots (QDs) can be strongly enhanced in comparison with bulk CdS:Mn and nanoparticles, while the luminescence due to the surface state is greatly suppressed by a capping ZnS shell We find that with the increasing temperature, the peak position of CdS:Mn/ZnS core-shell QDs blue shifts due to the reduction of phonon coupling. Unlike the bulk CdS:Mn, the luminescence of the core-shell QDs is less sensitive to thermal quenching.  相似文献   

10.
Silicon nanowires (SiNWs) were grown directly from n-(111) single-crystal silicon (c-Si) substrate based on a solid- liquid-solid mechanism, and Au film was used as a metallic catalyst. The room temperature photoluminescence properties of SiNWs were observed by an Xe lamp with an exciting wavelength of 350 nm. The results show that the SiNWs exhibit a strongly blue luminescent band in the wavelength range 40-480 nm at an emission peak position of 420 nm. The luminescent mechanism of SiNWs indicates that the blue luminescence is attributed to the oxygen-related defects, which are in SiOx amorphous oxide shells around the crystalline core of SiNWs.  相似文献   

11.
The thermal stress in a magnetic core–shell nanoparticle during a thermal process is an important parameter to be known and controlled in the magnetization process of the core–shell system. In this paper we analyze the stress that appears in a core–shell nanoparticle subjected to a cooling process. The external surface temperature of the system, considered in equilibrium at room temperature, is instantly reduced to a target temperature. The thermal evolution of the system in time and the induced stress are studied using an analytical model based on a time-dependent heat conduction equation and a differential displacement equation in the formalism of elastic displacements. The source of internal stress is the difference in contraction between core and shell materials due to the temperature change. The thermal stress decreases in time and is minimized when the system reaches the thermal equilibrium. The radial and azimuthal stress components depend on system geometry, material properties, and initial and final temperatures. The magnitude of the stress changes the magnetic state of the core–shell system. For some materials, the values of the thermal stresses are larger than their specific elastic limits and the materials begin to deform plastically in the cooling process. The presence of the induced anisotropy due to the plastic deformation modifies the magnetic domain structure and the magnetic behavior of the system.  相似文献   

12.
梁松  朱洪亮  潘教青  王圩 《中国物理》2006,15(5):1114-1119
Self-assembled InAs quantum dots (QDs) are grown on vicinal GaAs (100) substrates by using metal-organic chemical vapour deposition (MOCVD). An abnormal temperature dependence of bimodal size distribution of InAs quantum dots is found. As the temperature increases, the density of the small dots grows larger while the density of the large dots turns smaller, which is contrary to the evolution of QDs on exact GaAs (100) substrates. This trend is explained by taking into account the presence of multiatomic steps on the substrates. The optical properties of InAs QDs on vicinal GaAs(100) substrates are also studied by photoluminescence (PL) . It is found that dots on a vicinal substrate have a longer emission wavelength, a narrower PL line width and a much larger PL intensity.  相似文献   

13.
According to the well-established light-to-electricity conversion theory,resonant excited carriers in the quantum dots will relax to the ground states and cannot escape from the quantum dots to form photocurrent,which have been observed in quantum dots without a p–n junction at an external bias.Here,we experimentally observed more than 88% of the resonantly excited photo carriers escaping from In As quantum dots embedded in a short-circuited p–n junction to form photocurrent.The phenomenon cannot be explained by thermionic emission,tunneling process,and intermediate-band theories.A new mechanism is suggested that the photo carriers escape directly from the quantum dots to form photocurrent rather than relax to the ground state of quantum dots induced by a p–n junction.The finding is important for understanding the low-dimensional semiconductor physics and applications in solar cells and photodiode detectors.  相似文献   

14.
We investigate the temperature dependence of photoluminescence from single and ensemble InAs/GaAs quantum dots systematically. As temperature increases, the exciton emission peak for single quantum dot shows broadening and redshift. For ensemble quantum dots, however, the exciton emission peak shows narrowing and fast redshift. We use a simple steady-state rate equation model to simulate the experimental data of photoluminescence spectra. It is confirmed that carrier-phonon scattering gives the broadening of the exciton emission peak in single quantum dots while the effects of carrier thermal escape and retrapping play an important role in the narrowing and fast redshift of the exciton emission peak in ensemble quantum dots.  相似文献   

15.
Copper-doped Zn S(Zn S:Cu) nanocrystals are synthesized by the sol–gel method.The average size of the Zn S:Cu nanocrystals is 3.1 nm.The x-ray diffraction indicates that increasing the Cu-dopant concentration results in a large shift in the diffraction angle.The effects of the dopant concentration,the reactant ratio,and aging temperature on the optical properties of the Zn S:Cu nanocrystals are also investigated.The fluorescence emission mechanism is analyzed by peak deconvolution using Gaussian functions.We find that the emission of the Zn S:Cu nanocrystal is composed of different luminescence centers at 430,470,490,526,and 560 nm.The origins of these emissions are discussed and demonstrated by controlled experiments.  相似文献   

16.
This article deals with the strain distributions around GaN/AlN quantum dots by using the finite element method. Special attention is paid to the influence of Al0.2Ga0.8N strain-reducing layer on strain distribution and electronic structure. The numerical results show that the horizontal and the vertical strain components are reinforced in the GaN quantum dot due to the presence of the strain-reducing layer, but the hydrostatic strain in the quantum dot is not influenced. According to the deformation potential theory, we study the band edge modifications and the piezoelectric effects. The result demonstrates that with the increase of the strain reducing layer, the transition energy between the ground state electron and the heavy hole increases. This result is consistent with the emission wavelength blue shift phenomenon observed in the experiment and confirms that the wavelength shifts toward the short wavelength range is realizable by adjusting the structure-dependent parameters of GaN/AlN quantum dot.  相似文献   

17.
杨冠卿  张世著  徐波  陈涌海  王占国 《中国物理 B》2017,26(6):68103-068103
Two kinds of InAs/GaAs quantum dot(QD) structures are grown by molecular beam epitaxy in formation–dissolution–regrowth method with different in-situ annealing and regrowth processes. The densities and sizes of quantum dots are different for the two samples. The variation tendencies of PL peak energy, integrated intensity, and full width at half maximum versus temperature for the two samples are analyzed, respectively. We find the anomalous temperature dependence of the InAs/GaAs quantum dots and compare it with other previous reports. We propose a new energy band model to explain the phenomenon. We obtain the activation energy of the carrier through the linear fitting of the Arrhenius curve in a high temperature range. It is found that the Ga As barrier layer is the major quenching channel if there is no defect in the material. Otherwise, the defects become the major quenching channel when some defects exist around the QDs.  相似文献   

18.
The optical performance of a grating-coupled external Continuous tuning from 1391 nm to 1468 nm is realized at cavity laser based on InAs/InP quantum dots is investigated. an injection current of 1900 mA. With the injection current increasing to 2300 mA, the tuning is blue shifted to some extent to the range from 1383 nm to 1461 nm. By combining the effect of the injection current with the grating tuning, the total tuning bandwidth of the external cavity quantum-dot laser can reach up to 85 nm. The dependence of the threshold current on the tuning wavelength is also presented.  相似文献   

19.
Effects of rapid thermal annealing on the optical and structural properties of self-assembled InAs/GaAs quantum dots capped by the InAlAs/InGaAs combination layers are studied by photoluminescence and transmission electron microscopy. The photoluminescence measurement shows that the photoluminescence peak of the sample after 850℃ rapid thermal annealing is blue shifted with 370meV and the excitation peak intensity increases by a factor of about 2.7 after the rapid thermal annealing, which indicates that the InAs quantum dots have experienced an abnormal transformation during the annealing. The transmission electron microscopy shows that the quantum dots disappear and a new InAlGaAs single quantum well structure forms after the rapid thermal annealing treatment. The transformation mechanism is discussed. These abnormal optical properties are attributed to the structural transformation of these quantum dots into a single quantum well.  相似文献   

20.
The thermal stability of Ti@Al core/shell nanoparticles with different sizes and components during continuous heating and cooling processes is examined by a molecular dynamics simulation with embedded atom method. The thermodynamic properties and structure evolution during continuous heating and cooling processes are investigated through the characterization of the potential energy, specific heat distribution, and radial distribution function(RDF). Our study shows that, for fixed Ti core size, the melting temperature decreases with Al shell thickness, while the crystallizing temperature and glass formation temperature increase with Al shell thickness. Diverse melting mechanisms have been discovered for different Ti core sized with fixed Al shell thickness nanoparticles. The melting temperature increases with the Ti core radius. The trend agrees well with the theoretical phase diagram of bimetallic nanoparticles. In addition, the glass phase formation of Al–Ti nanoparticles for the fast cooling rate of 12 K/ps, and the crystal phase formation for the low cooling rate of 0.15 K/ps. The icosahedron structure is formed in the frozen 4366 Al–Ti atoms for the low cooling rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号