首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the asymmetrical colloidal mixture subject to a confining potential and an external multi-Gauss potential, the separation of species is studied based on the classical density functional theory of simple fluids. The multi-Gauss potential consists of several Gauss barriers, which are distributed along the axial direction with uniform distance. The barrier width,barrier distance, and barrier height are individually adjusted to investigate their effects on the species separation. From the numerical results, it is concluded that in each condition, the competition between the external potential and the depletion potential determines the phase equilibrium and the separation. Species separation appears only in the region where the depletion is dominant. On the contrary, both species are absent in the regions where the external potential takes the absolute advantage.  相似文献   

2.
The number of return photons from sodium laser beacon(SLB) greatly suffers down-pumping, recoil, and geomagnetic field when the long pulse laser with circular polarization interacts with sodium atoms in the mesosphere. Considering recoil and down-pumping effects on the number of return photons from SLB, the spontaneous radiation rates are obtained by numerical computations and fittings. Furthermore, combining with the geomagnetic field effects, a new expression is achieved for calculating the number of return photons. By using this expression and considering the stochastic distribution of laser intensity in the mesosphere under different turbulence models for atmosphere, the number of return photons excited by the narrow-band single mode laser and that by the narrow-band three-mode laser are respectively calculated. The results show that the narrow-band three-mode laser with a specific spectrum structure has a higher spontaneous radiation rate and more return photons than a narrow-band single mode laser. Of note, the effect of the atmospheric turbulence on the number of return photons is remarkable. Calculation results indicate that the number of return photons under the HV5/7 model for atmospheric turbulence is much higher than that under the Greenwood and Mod HV models.  相似文献   

3.
The electronic structures, Born effective charges(BECs), and full phonon dispersions of cubic, tetragonal, orthorhombic, and rhombohedral K0.5Na0.5Nb O3 are investigated by the first principles method based on density functional theory.The hybridized states of Nb 4d and O 2p states are observed in the valence band, showing the formation of a strong Nb–O covalent bond which should be responsible for the displacement of Nb and O atoms. The abnormally large BECs of Nb and O indicate the possibility of phase instability induced by the off-center displacement of Nb and O atoms. The phonon dispersions reveal that the ferroelectric instability of K0.5Na0.5Nb O3 is dominated by Nb and O displacements with significant Na characteristics. In addition to the ferroelectric instability, there is also rotational instability coming from the oxygen octahedra rotation around one axis. Moreover, the Γ phonon properties of orthorhombic KNb O3, Na Nb O3, and K0.5Na0.5Nb O3 are also studied in detail.  相似文献   

4.
The electronic structures and optical properties of N-doped Zn O bulks and nanotubes are investigated using the firstprinciples density functional method. The calculated results show that the main optical parameters of Zn O bulks are isotropic(especially in the high frequency region), while Zn O nanotubes exhibit anisotropic optical properties. N doping results show that Zn O bulks and nanotubes present more obvious anisotropies in the low-frequency region. Thereinto, the optical parameters of N-doped Zn O bulks along the [100] direction are greater than those along the [001] direction, while for N-doped nanotubes, the variable quantities of optical parameters along the [100] direction are less than those along the[001] direction. In addition, refractive indexes, electrical conductivities, dielectric constants, and absorption coefficients of Zn O bulks and nanotubes each contain an obvious spectral band in the deep ultraviolet(UV)(100 nm~ 300 nm). For each of N-doped Zn O bulks and nanotubes, a spectral peak appears in the UV and visible light region, showing that N doping can broaden the application scope of the optical properties of Zn O.  相似文献   

5.
付丽  郭永权 《中国物理 B》2014,(12):469-475
Ce-doped Cu In Te2(CICT) semiconducting compounds are successfully synthesized. The phase structures, optical,and electric properties are investigated using powder X-ray diffraction(XRD), field emission scanning electron microscopy(FESEM), X-ray photoelectron spectrometer(XPS), Raman spectrometer, ultraviolet and visible spectrophotometer(UVVis), and a standard four-probe method. Cu In1-xCex Te2 crystallizes into a tetragonal structure with predominant orientation along the [112] direction. The lattice parameters are a = 6.190(6) A–6.193(0) A and c = 12.406(5) A–12.409(5) A. Ce prefers to occupy the 4b crystal position. According to the analysis of XPS spectra, Ce shows the mixture of valences 4+and 3+. Raman spectra reveal that the photon vibrating model in the CICT follows A1 mode in a wavenumber range of123 cm^-1–128 cm^-1. UV-Vis spectra show that the band gap Eg values before and after 0.1 mole Ce doped into Cu In Te2 are 1.28 e V and 1.16 e V, respectively. It might be due to the mixture of valences for Ce. Ce doped into Cu In Te2 still shows the semiconductor characteristics.  相似文献   

6.
A relativistic Mie-type potential for spin-1/2 particles is studied. The Dirac Hamiltonian contains a scalar S(r) and a vector V(r) Mie-type potential in the radial coordinates, as well as a tensor potential U(r) in the form of Coulomb potential. In the pseudospin(p-spin) symmetry setting Σ = Cps and Δ = V(r), an analytical solution for exact bound states of the corresponding Dirac equation is found. The eigenenergies and normalized wave functions are presented and particular cases are discussed with any arbitrary spin–orbit coupling number κ. Special attention is devoted to the caseΣ = 0 for which p-spin symmetry is exact. The Laplace transform approach(LTA) is used in our calculations. Some numerical results are obtained and compared with those of other methods.  相似文献   

7.
The behaviors of a system that alternates between the R¨ossler oscillator and Chua's circuit is investigated to explore the influence of the switches on the dynamical evolution.Switches related to the state variables are introduced,upon which a typical switching dynamical model is established.Bifurcation sets of the subsystems are derived via analysis of the related equilibrium points,which divide the parameters into several regions corresponding to different types of attractors.The dynamics behave typically in period orbits with the variation of the parameters.The focus/cycle periodic switching phenomenon is explored in detail to present the mechanism of the movement.The period-doubling bifurcation to chaos can be observed via the doubling increase of the turning points related to the switches.Furthermore,period-decreasing sequences have been obtained,which can be explained by the variation of the eigenvalues associated with the equilibrium points of the subsystems.  相似文献   

8.
In this paper, we introduce new invariant sets, and the invariant sets and exact solutions to general reactiondiffusion equation are discussed. It is shown that there exist a class of exact solutions to the equations that belong to the invariant sets.  相似文献   

9.
Cellular aging can result in deterioration of electrical coupling, the extension of the action potential duration, and lower excitability of the cell. Those factors are introduced into the Greenberg–Hastings cellular automaton model and the effects of the cellular aging on the dynamics of spiral waves are studied. The numerical results show that a 50% reduction of the coupling strength of aging cells has a little influence on spiral waves. If the coupling strength of aging cells equals zero, the ability for the medium to maintain spiral waves will be reduced by approximately 50% when the aging cell ratio increases from 0 to 0.5, where the reduction of cell excitability plays a major role in inducing disappearance of spiral waves. When the relevant parameters are properly chosen, the cellular aging can lead to the meandering of spiral waves,the emergence of the binary spiral waves, and even the disappearance of spiral waves via the stopping rotation or shrinkage of wave. Physical mechanisms of the above phenomena are analyzed briefly.  相似文献   

10.
A simplified quasi-static computational model for self-sensing applications of magnetostrictive actuators based on terfenol-D rods is presented. Paths and angle changes in the magnetic moments rotation of Tb0.3Dy0.7Fe2 alloy are studied as functions of compressive stress and magnetic field, and then used to determine the magnetization in its actuation. Then sensing of magnetic induction picked from a driving coil in an actuator is derived. The model is quick and efficient to solve moments rotation and its magnetization. Sensing results of compressive stress and magnetostriction calculated by the model are in good agreement with experiments and will be helpful in the design and control of self-sensing applications in actuators.  相似文献   

11.
In this paper, superwide-angle acoustic propagations above the critical angles of the Snell law in liquid–solid superlattice are investigated. Incident waves above the critical angles of the Snell law usually inevitably induce total reflection.However, incident waves with big oblique angles through the liquid–solid superlattice will produce a superwide angle transmission in a certain frequency range so that total reflection does not occur. Together with the simulation by finite element analysis, theoretical analysis by using transfer matrix method suggests the Bragg scattering of the Lamb waves as the physical mechanism of acoustic wave super-propagation far beyond the critical angle. Incident angle, filling fraction,and material thickness have significant influences on propagation. Superwide-angle propagation phenomenon may have potential applications in nondestructive evaluation of layered structures and controlling of energy flux.  相似文献   

12.
To improve the security of the smart grid, quantum key distribution(QKD) is an excellent choice. The rapid fluctuations on the power aerial optical cable and electromagnetic disturbance in substations are two main challenges for implementation of QKD. Due to insensitivity to birefringence of the channel, the stable phase-coding Faraday–Michelson QKD system is very practical in the smart grid. However, the electromagnetic disturbance in substations on this practical QKD system should be considered. The disturbance might change the rotation angle of the Faraday mirror, and would introduce an additional quantum bit error rate(QBER). We derive the new fringe visibility of the system and the additional QBER from the electromagnetic disturbance. In the worst case, the average additional QBER only increases about 0.17% due to the disturbance, which is relatively small to normal QBER values. We also find the way to degrade the electromagnetic disturbance on the QKD system.  相似文献   

13.
姜学东  徐鹤  王昕 《中国物理 B》2014,(12):328-332
The charge quantity of small particulates such as PM2.5 plays a key role in the collection efficiency of an electrostatic precipitator(ESP). Under a single electrostatic voltage, it is difficult to charge and absorb small particulates. A new method of superimposing an alternative voltage on the electrostatic voltage is provided in this paper. Characteristics of small particulates are analyzed under alternative and electrostatic voltages. It is demonstrated that an alternative voltage can significantly improve the collection efficiency in three aspects: preventing anti-corona, increasing the charge quantity of small particulates, and increasing the median particulate size by electric agglomeration. In addition, practical usage with the superposition of alternative voltage is provided, and the results are in agreement with the theoretical analysis.  相似文献   

14.
The phase change between periodic signals is regular. Research on the regular phenomenon between periodic signals is helpful to improve the precision of some measurements and develop some new measurement methods. So it is necessary to analyze the characteristics of the greatest common factor frequency and the least common multiple period universally existing in periodic signals. The regulation of the quantitative phase shift resolution between periodic signals is presented.The cause of difference in phase characteristics between periodic signals is explained well. In this paper we propose different application prospects based on the regular phenomenon between periodic signals, with focusing on the methods for high precision frequency measurement and transient stability measurement. The experimental results are satisfactory.  相似文献   

15.
In this paper, we demonstrate a carrier envelope phase-stabilized Yb-doped fiber frequency comb seeding by a nonlinear-polarization-evolution(NPE) mode-locked laser at a repetition rate of 60 MHz with a pulse duration of 191 fs.The pump-induced carrier envelope offset frequency( f0) nonlinear tuning is discussed and further explained by the spectrum shift of the laser pulse. Through the environmental noise suppression, the drift of the free-running f0 is reduced down to less than 3 MHz within an hour. By feedback control on the pump power with a self-made phase-lock loop(PLL)electronics the carrier envelope offset frequency is well phase-locked with a frequency jitter of 85 m Hz within an hour.  相似文献   

16.
A new modified Angelov current–voltage characteristic model equation is proposed to improve the drain–source current(Ids) simulation of an Al Ga N/Ga N-based(gallium nitride) high electron mobility transistor(Al Ga N/Ga N-based HEMT) at high power operation. Since an accurate radio frequency(RF) current simulation is critical for a correct power simulation of the device, in this paper we propose a method of Al Ga N/Ga N high electron mobility transistor(HEMT)nonlinear large-signal model extraction with a supplemental modeling of RF drain–source current as a function of RF input power. The improved results of simulated output power, gain, and power added efficiency(PAE) at class-AB quiescent bias of Vgs =-3.5 V, Vds= 30 V with a frequency of 9.6 GHz are presented.  相似文献   

17.
The particle sizes and porosities of simulated pore structures are probed by terahertz time-domain spectroscopy.A double-peak time-domain spectrum phenomenon is observed when the terahertz(THz) pulses illuminated a pore and a particle. The amplitudes of the two peaks depend strongly and monotonically on the particle size and porosity. A model is used to study the phenomenon, and the computational results agreed with the experimental measurements. These measurements indicate the terahertz spectroscopic behaviors of pores and particles, suggesting that terahertz spectroscopy can be used as a noncontact probe of porosity.  相似文献   

18.
In this paper, a new type of conserved quantity indirectly deduced from the Mei symmetry for relativistic mechanical system in phase space is studied. The definition and the criterion of the Mei symmetry for the system are given. The condition for existence and the form of the new conserved quantity are obtained. Finally, an example is given to illustrate the application of the results.  相似文献   

19.
The formation of the Mn/Pb Te(111) interface is investigated by photoemission spectrum. The core level behavior of Mn 2p is consistent with Mn substitutional adsorption during the initial Mn deposition, forming a(√3 ×√3)R30?-Pb0.67Mn0.33 Te phase of the second layer. Further deposition of Mn can cause metallic Mn islands to cover the substitutional substrate. Ultraviolet photoemission measurements show that the Fermi level is shifted into the conduction band, indicating Ohmic contact formation at the Mn/Pb Te(111) interface. The valence band maximum associated with the Pb0.67Mn0.33 Te layer is located at 1.27 e V below the Fermi level, and a schematic electronic structure of the Mn/Pb Te(111)interface is given. The work function of the substituted substrate with Pb-covered Mn islands is determined to be 4.16 e V,in comparison with 4.35 e V for the Pb-covered substituted substrate and 3.95 e V for the pristine Pb Te(111) surface.  相似文献   

20.
A higher-order finite-difference time-domain(HO-FDTD) in the spherical coordinate is presented in this paper. The stability and dispersion properties of the proposed scheme are investigated and an air-filled spherical resonator is modeled in order to demonstrate the advantage of this scheme over the finite-difference time-domain(FDTD) and the multiresolution time-domain(MRTD) schemes with respect to memory requirements and CPU time. Moreover, the Berenger's perfectly matched layer(PML) is derived for the spherical HO-FDTD grids, and the numerical results validate the efficiency of the PML.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号