首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Introductionp_Laplaceequationsariseinavarietyofinterestingapplications,theyappearasmodelsofgasdiffusionthroughporousmedia,alsointhetheoryofthermalself_ignitionofachemicallyactivemixtureofgases(see [1 ]anditsreferences) ,recently ,WANGJun_yu (Ref.[1 ] )studiedth…  相似文献   

2.
The system of ordinary differential equations
  相似文献   

3.
1 IntroductionandLemmasTherearemanyresultsaboutexistence (globalorlocal)andasymptoticbehaviorofsolutionsforreaction_diffusionequations[1- 9].Bytheaidsofresults[2 ,3]ofequation u/ t=Δu-λ|u|γ- 1uwithinitial_boundaryvalues,paper [4 ]studiedtheproblemof u/ t=Δu-λ|eβtu|γ- …  相似文献   

4.
IntroductionAboutsingularperturbationofboundaryvalueproblemforsecond_orderordinarydifferentialequationworksofalargenumberwereconsideredonlyforthecaseofinvolvingonesmallparameter[1- 4].Onlyafewworkswereconsideredforthecaseofinvolvingtwosmallparameters[5 - 8]…  相似文献   

5.
6.
In this article we deal with non-smooth dynamical systems expressed by a piecewise first order implicit differential equations of the form
$$\begin{aligned} \dot{x}=1,\quad \left( \dot{y}\right) ^2=\left\{ \begin{array}{lll} g_1(x,y) \quad \text{ if }\quad \varphi (x,y)\ge 0 \\ g_2(x,y) \quad \text{ if }\quad \varphi (x,y)\le 0 \end{array},\right. \end{aligned}$$
where \(g_1,g_2,\varphi :U\rightarrow \mathbb {R}\) are smooth functions and \(U\subseteq \mathbb {R}^2\) is an open set. The main concern is to study sliding modes of such systems around some typical singularities. The novelty of our approach is that some singular perturbation problems of the form
$$\begin{aligned} \dot{x}= f(x,y,\varepsilon ) ,\quad (\varepsilon \dot{ y})^2=g ( x,y,\varepsilon ) \end{aligned}$$
arise when the Sotomayor–Teixeira regularization is applied with \((x, y) \in U\) , \(\varepsilon \ge 0\), and fg smooth in all variables.
  相似文献   

7.
8.
Hakl  R.  Lomtatidze  A.  Šremr  J. 《Nonlinear Oscillations》2003,6(4):535-559
We establish unimprovable (in a certain sense) sufficient conditions for the solvability and unique solvability of the boundary-value problem
where is a continuous operator satisfying the Carathéodory conditions, h: C([a, b]; R) R is a continuous functional, and R +.  相似文献   

9.
Using an Orlicz–Sobolev Space setting, we consider an eigenvalue problem for a system of the form
We prove that the solution to a suitable minimizing problem, with a restriction, yields a solution to this problem for a certain λ. The differential operators involved lack homogeneity and in addition the Orlicz–Sobolev spaces needed may not be reflexive and the corresponding functional in the minimization problem is in general neither everywhere defined nor a fortiori C 1.  相似文献   

10.
We propose a general framework for the study of L 1 contractive semigroups of solutions to conservation laws with discontinuous flux:
$ u_t + \mathfrak{f}(x,u)_x=0, \qquad \mathfrak{f}(x,u)= \left\{{ll} f^l(u),& x < 0,\\ f^r(u), & x > 0, \right.\quad\quad\quad (\rm CL) $ u_t + \mathfrak{f}(x,u)_x=0, \qquad \mathfrak{f}(x,u)= \left\{\begin{array}{ll} f^l(u),& x < 0,\\ f^r(u), & x > 0, \end{array} \right.\quad\quad\quad (\rm CL)  相似文献   

11.
Steady vortices for the three-dimensional Euler equation for inviscid incompressible flows and for the shallow water equation are constructed and shown to tend asymptotically to singular vortex filaments. The construction is based on a study of solutions to the semilinear elliptic problem $$ \left\{ \begin{aligned} -{\rm div} \left(\frac{\nabla u_{\varepsilon}}{b}\right) & = \frac{1}{\varepsilon^2} b f \left(u_{\varepsilon} - \log \tfrac{1}{\varepsilon} q \right) & & \text{ in } \; \Omega, \\u_\varepsilon & = 0 & & \text{ on } \; \partial \Omega, \end{aligned}\right.$$ for small values of ${\varepsilon > 0}$ .  相似文献   

12.
By using comparison theorem and constructing suitable Lyapunov functional, we study the following periodic Lotka–Volterra model with M-predators and N-preys by pure-delay type
A set of easily verifiable sufficient conditions are obtained for the existence and global attractivity of a unique positive almost periodic solution of the above model, which improve and generalize some known results.  相似文献   

13.
In this paper we study the existence and concentration behaviors of positive solutions to the Kirchhoff type equations $$- \varepsilon^2 M \left(\varepsilon^{2-N}\!\!\int_{\mathbf{R}^N}|\nabla u|^2\,\mathrm{d} x \right) \Delta u \!+\! V(x) u \!=\! f(u) \quad{\rm in}\ \mathbf{R}^N, \quad u \!\in\! H^1(\mathbf{R}^N), \ N \!\geqq\!1,$$ where M and V are continuous functions. Under suitable conditions on M and general conditions on f, we construct a family of positive solutions \({(u_\varepsilon)_{\varepsilon \in (0,\tilde{\varepsilon}]}}\) which concentrates at a local minimum of V after extracting a subsequence (ε k ).  相似文献   

14.
In this paper we study the asymptotic behavior of solutions of the following nonautonomous wave equation with nonlinear dissipation.
$\left\{\begin{array}{ll} u_{tt}+\vert u_{t}\vert^{\alpha}u_{t}-\Delta u +f(u)=g(t,x),\quad{\rm in}\,\mathbb{R}_{+}\times\Omega,\\ \qquad\qquad u(t,x)=0,\quad\, {\rm on}\,\mathbb{R}_{+}\times\partial\Omega,\end{array}\right.$
where f is an analytic function, α is a small positive real and g(t, ·) tends to 0 sufficiently fast in L 2(Ω) as t tends to ∞.
We also obtain a general convergence result and the rate of decay of solutions for a class of second order ODE containing as a special case
$\left\{\begin{array}{ll} \ddot{U}(t)+\Vert\dot{U}(t)\Vert^{\alpha}\dot{U}(t)+\nabla F(U(t))=g(t),\quad t \in \mathbb{R}_+,\\ \qquad U(0)=U_{0}\,\in \mathbb{R}^{N},\quad\dot{U}(0)=U_{1}\in \mathbb{R}^{N}. \end{array}\right.$
  相似文献   

15.
This paper is concerned with time periodic traveling curved fronts for periodic Lotka–Volterra competition system with diffusion in two dimensional spatial space
$$\begin{aligned} {\left\{ \begin{array}{ll} \dfrac{\partial u_{1}}{\partial t}=\Delta u_{1} +u_{1}(x,y,t)\left( r_{1}(t)-a_{1}(t)u_{1}(x,y,t)-b_{1}(t)u_{2}(x,y,t)\right) ,\\ \dfrac{\partial u_{2}}{\partial t}=d\Delta u_{2} +u_{2}(x,y,t)\left( r_{2}(t)-a_{2}(t)u_{1}(x,y,t)-b_{2}(t)u_{2}(x,y,t)\right) , \end{array}\right. } \end{aligned}$$
where \(\Delta \) denotes \(\frac{\partial ^{2}}{\partial x^{2} }+ \frac{\partial ^{2}}{\partial y^{2} }\), \(x,y\in {\mathbb {R}}\) and \(d>0\) is a constant, the functions \(r_i(t),a_i(t)\) and \(b_i(t)\) are T-periodic and Hölder continuous. Under suitable assumptions that the corresponding kinetic system admits two stable periodic solutions (p(t), 0) and (0, q(t)), the existence, uniqueness and stability of one-dimensional traveling wave solution \(\left( \Phi _{1}(x+ct,t),\Phi _{2}(x+ct,t)\right) \) connecting two periodic solutions (p(t), 0) and (0, q(t)) have been established by Bao and Wang ( J Differ Equ 255:2402–2435, 2013) recently. In this paper we continue to investigate two-dimensional traveling wave solutions of the above system under the same assumptions. First, we establish the asymptotic behaviors of one-dimensional traveling wave solutions of the system at infinity. Using these asymptotic behaviors, we then construct appropriate super- and subsolutions and prove the existence and non-existence of two-dimensional time periodic traveling curved fronts. Finally, we show that the time periodic traveling curved front is asymptotically stable.
  相似文献   

16.
Bifurcation phenomena from standing pulse solutions of the problem is considered. (>0) is a sufficiently small parameter and is a positive one. It is shown that there exist two types of destabilization of standing pulse solutions when decreases. One is the appearance of travelling pulse solutions via the static bifurcation and the other is that of in-phase breathers via the Hopf bifurcation. Furthermore which type of destabilization occurs first with decreasing is discussed for the piecewise linear nonlinearities f and g.  相似文献   

17.
We study the limit as ε → 0 of the entropy solutions of the equation . We prove that the sequence u ε two-scale converges toward a function u(t, x, y), and u is the unique solution of a limit evolution problem. The remarkable point is that the limit problem is not a scalar conservation law, but rather a kinetic equation in which the macroscopic and microscopic variables are mixed. We also prove a strong convergence result in .  相似文献   

18.
In this paper a strongly nonlinear forced oscillator will be studied. It will be shown that the recently developed perturbation method based on integrating factors can be used to approximate first integrals. Not onlyapproximations of first integrals will be given, butit will also be shown how, in a rather efficient way, the existence and stability oftime-periodic solutions can be obtained from these approximations. In additionphase portraits, Poincaré-return maps, and bifurcation diagrams for a set of values of the parameters will be presented. In particularthe strongly nonlinear forced oscillator equation will be studied in this paper. It will be shown that the presentedperturbation method not onlycan be applied to a weakly nonlinear oscillator problem (that is, when the parameter ) but also to a strongly nonlinear problem (that is, when ). The model equation as considered in this paper is related to the phenomenon of galloping ofoverhead power transmission lines on which ice has accreted.  相似文献   

19.
We study the limit as ε → 0 of the solutions of the equation . This problem has already been addressed in a previous article in the case of well-prepared initial data, i.e. when the microscopic profile of the solution is adapted to the medium at time t = 0. Here, we prove that when the initial data is not well prepared, there is an initial layer during which the solution adapts itself to match the profile dictated by the environment. The typical size of the initial layer is of order ε. The proof relies strongly on the parabolic form of the equation; in particular, no condition of nonlinearity on A is required.  相似文献   

20.
In this paper, first a class of fractional differential equations are obtained by using the fractional variational principles. We find a fractional Lagrangian L(x(t), where a c D t α x(t)) and 0<α<1, such that the following is the corresponding Euler–Lagrange
(1)
At last, exact solutions for some Euler–Lagrange equations are presented. In particular, we consider the following equations
(2)
(3)
where g(t) and f(t) are suitable functions. D. Baleanu is on leave of absence from Institute of Space Sciences, P.O. BOX MG-23, 76900 Magurele-Bucharest, Romania. e-mail: baleanu@venus.nipne.ro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号