首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The compounds (Me4N)[A(M(SC(O)Ph)3)2] (A = K, M = Cd (2); A = Na, M = Hg (3); and A = K, M = Hg (4)) were synthesized by reacting the appropriate metal chloride with A+PhC(O)S- and Me4NCl in the ratios 1:3:1 and 2:6:1. The structures of these compounds were determined by single-crystal X-ray diffraction methods. All the compounds are isomorphous, isostructural, and crystallized in the space group P1 with Z = 1. Single-crystal data for 2: a = 106670(2) A, b = 111522(2) A, c = 119294(2) A, alpha = 71782(1) degrees, beta = 85208(1) degrees, gamma = 69418(1) degrees, V = 126140(4) A3, Dcalc = 1528 g cm-3. Single-crystal data for 3: a = 10840(2) A, b = 10946(4) A, c = 12006(3) A, alpha = 7218(2) degrees, beta = 8675(2) degrees, gamma = 6743(2) degrees, V = 12493(6) A3, Dcalc = 1756 g cm-3. Single-crystal data for 4: a = 104780(1) A, b = 112563(2) A, c = 119827(2) A, alpha = 71574(1) degrees, beta = 85084(1) degrees, gamma = 70705(1) degrees, V = 126523(3) A3, Dcalc = 1755 g cm-3. In the [A(M(SC(O)Ph)3)2]- anions, each M(II) atom is bonded to three thiobenzoate ligands through sulfur atoms, giving a trigonal planar MS3 geometry. The carbonyl oxygen atoms from the two [M(SC(O)Ph)3]- anions are bonded to the alkali metal atom, providing an octahedral environment. Solution metal NMR studies showed the concentration-dependent dissociation of the alkali metal ions in the trinuclear anions.  相似文献   

2.
Ayyappan P  Evans OR  Lin W 《Inorganic chemistry》2001,40(18):4627-4632
Three-dimensional open frameworks [Co2(nicotinate)4(mu-H2O)]-CH3CH2OH-H2O, 1, and [Ni2(nicotinate)4(mu-H2O)]-CH3CH2OH-H2O, 2, were obtained by hydro(solvo)thermal reactions between 3-cyanopyridine and cobalt(II) nitrate and nickel(II) perchlorate, respectively. Both 1 and 2 exhibit complicated 3-D structures based on [M2(nicotinate)4(mu-H2O)] (M = Co or Ni) building blocks and possess open channels that are occupied by removable solvent molecules. 3-D open frameworks [M2L4(mu-H2O)]-HL-(H2O)x (where M = Co, x = 2, 3, and M = Ni, x = 1, 4, and L = trans-3-(3-pyridyl)acrylate) were similarly prepared with trans-3-(3-pyridyl)acrylic acid in place of 3-cyanopyridine. Compounds 3 and 4 are isostructural and exhibit network topologies similar to that of 1 with open channels occupied by disordered trans-3-(3-pyridyl)acrylic acid and water guest molecules. Crystal data for 1: triclinic space group Ponebar, a = 10.534(1) A, b = 11.907(1) A, c = 14.046(1) A, alpha = 106.645(1) degrees, beta = 101.977(1) degrees, gamma = 112.078(1) degrees, and Z = 4. Crystal data for 2: tetragonal space group P4/ncc, a = 20.089(1) A, c = 14.016(1) A, and Z = 4. Crystal data for 3: monoclinic space group C2/c, a = 14.082(2) A, b = 15.278(2) A, c = 18.537(2) A, beta = 105.360(2) degrees, and Z = 2. Crystal data for 4: monoclinic space group C2/c, a = 14.082(1) A, b = 15.250(1) A, c = 18.606(1) A, beta = 106.747(1) degrees, and Z = 2.  相似文献   

3.
The reaction of methylphosphine sulfide, MeP(S)(3,5-Me2Pz)2, 1, with anhydrous CuCl2 affords a tetranuclear copper cluster[Cu2Cl2(3,5-Me2Pz)3(MePO3)]2, 2, and a dinuclear compound Cu2Cl4(3,5-Me2Pz)4, 3. This reaction involves a metal-assisted desulfurization along with concomitant hydrolysis of P-N bonds. The X-ray structures of 1-3 have been determined, and the crystal parameters for these are the following. 1: space group = C2/c, a = 15.2552(1) A, b = 8.7364(2) A, c = 21.4490(3) A, beta = 93.349(1) degrees, V = 2853.74(8) A3, and Z = 8. 2: space group = P2(1)/n, a = 12.5964(4) A, b = 15.7773(4) A, c = 13.9781(4) A, beta = 116.6280(10) degrees, V = 2483.32(12) A3, and Z = 2. 3: space group = P2(1)/c, a = 8.7137(8) A, b = 13.5493(14) A, c = 11.8847(12) A, beta = 106.179(2) degrees, V = 1347.6(2) A3, and Z = 2. The structure of 2 shows that it comprises two dinuclear copper cores bridged together by two tripodal methylphosphinate, MePO3, ligands. 2 is weakly antiferromagnetically coupled, as revealed by variable temperature magnetic susceptibility measurements.  相似文献   

4.
2,4,6-Tris(2-pyridyl)-1,3,5-triazine (TPT) bridged dinuclear rhenium(I) tricarbonyl halide complexes with the composition (mu-TPT)[ReX(CO)(3)](2) (3, X = Cl; 4, X = Br) can be made either by one-pot reaction of TPT with 2 equiv of [ReX(CO)(5)] (X = Cl and Br) in chloroform or by reacting mononuclear [ReX(CO)(3)(TPT)] (2) (1, X = Cl; 2, X = Br) with an excess amount of [ReX(CO)(5)]. Crystal data are as follows. 1: monoclinic, P2(1)/c, a = 11.751(1) A, b = 11.376(1) A, c = 15.562(2) A, beta = 103.584(2) degrees, V = 2022.0(4) A(3), Z = 4. 2: monoclinic, P2(1)/c, a = 11.896(1) A, b = 11.396(1) A, c = 15.655(1) A, beta = 104.474(2) degrees, V = 2054.9(3) A(3), Z = 4. 3: triclinic, P1, a = 11.541(2) A, b = 12.119(2) A, c = 13.199(2) A, alpha = 80.377(2) degrees, beta = 76.204(3) degrees, gamma = 66.826(2) degrees, V = 1642.5(4) A(3), Z = 2. Crystals of 4 crystallized from acetone: triclinic, P1, a = 11.586(5) A, b = 12.144(5) A, c = 13.364(6) A, alpha = 80.599(7) degrees, beta = 76.271(8) degrees, gamma = 67.158(8) degrees, V = 1678.0(12) A(3), Z = 2. Crystals of 4' are obtained from CH(2)Cl(2)-pentane solution: monoclinic, C2/c, a = 17.555(4) A, b = 15.277(3) A, c = 13.093(3) A, beta = 111.179(3) degrees, V = 3274.0(12) A(3), Z = 4. By contrast, similar reactions in the presence of methanol yielded complexes with the composition [mu-C(3)N(3)(OMe)(py)(2)(pyH)][ReX(CO)(3)](2) (5, X = Cl; 6, X = Br). Crystal data for 5: monoclinic, C2/c, a = 26.952(2) A, b = 16.602(1) A, c = 14.641(1) A, beta = 116.147(1) degrees, V = 5880.5(8) A(3), Z = 8. 6: monoclinic, C2/c, a = 27.513(3) A, b = 16.740(2) A, c = 14.837(2) A, beta = 116.925(2) degrees, V = 6092.8(10) A(3), Z = 8. An unusual metal-induced methoxylation at the carbon atom of the triazine ring of the bridging TPT ligand was observed. The nucleophilic attack of MeO(-) on C(3) results in a tetrahedral geometry around the carbon atom. Concomitantly, the uncoordinated pyridyl ring is protonated and rotated into a perpendicular orientation relative to the central C(3)N(3) ring. Reaction of TPT with [NEt(4)](2)[ReBr(3)(CO)(3)] in benzene-methanol resulted in an unexpected dinuclear complex 7, with formulation [mu-C(3)N(3)(OMe)(py)(3)][Re(CO)(3)][ReBr(CO)(3)]. The methoxylated TPT ligand functions simultaneously as a tridentate and bidentate ligand with two fac-Re(CO)(3)(+) cores. Crystal data for 7: monoclinic, P2(1)/n, a = 12.114(1) A, b = 14.878(1) A, c = 15.807(1) A, beta = 104.601(1) degrees, V = 2756.9(3) A(3), Z = 4.  相似文献   

5.
The Diels-Alder reactions of 1-substituted-3-(2-nitrovinyl)indoles 3 with quinones and acetylenes give aromatized 1:1 adducts (- nitrous acid) ( 1 ) or (- nitrous acid, -2 hydrogens) 2,5 . Likewise, dimerization (-2 nitrous acids) of 3 gives aromatized 2-(3-indolyl)carbazoles 4 . In contrast, 3 reacts with maleimides 6 to give 1:2 adducts (- nitrous acid or -2 hydrogens) 10 and 11 , respectively, along with smaller amounts of 1:1 adducts (- nitrous acid, -2 hydrogens; or -4 hydrogens) 12 and 13 , respectively. A mechanism for formation of the nitro products 11 and 13 is discussed. A 1:2 adduct (-2 hydrogens) 19 was also obtained from a Diels-Alder reaction between maleimide and the vinylindole produced in situ by condensing 1-methylindole with acetone. The stereochemisty of this 1:2 adduct has been determined by X-ray crystallography.  相似文献   

6.
Lu JY  Babb AM 《Inorganic chemistry》2002,41(6):1339-1341
A simultaneous reduction of copper(II) to copper(I) by pyridinecarboxylate and the substitution of carboxylato groups by iodo nucleophiles in a self-assembly process under hydrothermal conditions afforded a new iodine-inclusion coordination polymer [CuI(C5H3NI2)*1/2I2] 1. The synthetic studies of the substitution process produced a new supramolecular compound [IC5H3NCOOH] 2 and revealed that the catalytic properties of copper ions in redox and substitution reactions under hydrothermal conditions are attractive. Crystal data for [CuI(C5H3NI2)*1/2I2]: triclinic, space group P1; cell dimensions a = 4.216(1) A, b = 11.254(2) A, c = 12.196(2) A, alpha = 80.34(3) degrees, beta = 88.44(3) degrees, gamma = 83.10(3); V = 566.2(2) A(3), Z = 2. Crystal data for [IC(5)H(3)NCOOH]: monoclinic, space group P2(1)/c; cell dimensions a = 5.041(1) A, b = 17.313(2) A, c = 8.639(1) A, beta = 95.042(2) degrees; V = 751.02(13) A(3), Z = 4.  相似文献   

7.
Co-cyclization of 1,2,5-thiadiazole-3,4-dicarbonitrile and 3,6-diamyloxyphthalodinitrile in the presence of magnesium or lithium amylate in amyl alcohol leads to mixtures containing the Mg derivatives of the symmetrical species tetrakis(1,2,5-thiadiazolo)porphyrazine, (S(4))PzH(2), and tetrakis(1,4-diamyloxybenzo)porphyrazine, (A(4))PzH(2), and the low-symmetry macrocycles bearing peripheral 1,2,5-thiadiazole and 1,4-diamyloxybenzene rings in the ratio 1:3, 2:2 (cis and trans), and 3:1, that is, (SA(3))PzH(2), (S(2)A(2))PzH(2), (SASA)PzH(2), and (S(3)A)PzH(2), respectively. The basic Mg materials were converted to the corresponding free-base macrocycles by treatment with CF(3)COOH. The species were separated from the mixtures by chromatography, either as Mg complexes or demetalated materials. With results on (S(4))PzH(2) and (SA(3))PzH(2) in hand, including crystallographic work on the latter, a general chemical physical investigation has been carried out of all the symmetrical and unsymmetrical free-base macrocycles. The structures of the species (S(2)A(2))PzH(2) and (A(4))PzH(2). were elucidated by single-crystal X-ray crystallography. The effect of the progressive variation of the macrocyclic structure along the series, from the symmetrical (S(4))PzH(2) to its symmetrical partner (A(4))PzH(2) via the low-symmetry 3:1, 2:2 (cis and trans), and 1:3 macrocycles, was studied by IR, (1)H NMR, and UV/Vis linear and nonlinear (optical limiting) measurements. The results are interpreted on the basis of intra- and intermolecular interactions between the electron-deficient 1,2,5-thiadiazole and the electron-donating 1,4-diamyloxybenzene moieties.  相似文献   

8.
The molecular structures of a number of 2,6-dimesitylphenyl-based (2,6-dimesitylphenyl = Dmp) complexes of the group 3 elements scandium and yttrium as well as of the lanthanide element ytterbium are reported. Reaction of 1 equiv of DmpLi with 1 equiv of MCl(3) (M = Sc, Yb, Y) in tetrahydrofuran at room temperature followed by crystallization from toluene/hexanes at -30 degrees C produces DmpMCl(2)(THF)(2) (M = Sc: 1; M = Yb: 2) and DmpMCl(2)(THF)(3) (M = Y: 3), respectively. The one-pot reaction of DmpLi with 1 equiv of YbCl(3) in tetrahydrofuran at room temperature followed by addition of 1 equiv of KO(t)Bu produces the heterobimetallic monoalkoxide complex DmpYb(THF)(O(t)Bu)(mu-Cl)(2)Li(THF)(2) (4), which was crystallized from toluene/tetrahydrofuran (20:1) at -30 degrees C. Crystal data for 1: monoclinic, P2(1)/n; T = 203 K; a = 10.178(3) A; b = 15.468(3) A; c = 20.132(5) A; beta = 101.85(3) degrees; V = 3102.0(17) A(3); Z' = 4; D(calcd) = 1.228 g cm(-3); R(1) = 5.89%. Crystal data for 2: monoclinic, P2(1)/n; T = 173 K; a = 10.2447(7) A; b = 15.5683(12) A; c = 20.0979(14) A; beta = 101.749(4) degrees; V = 3238.3(5) A(3); Z' = 4; D(calcd) = 1.485 g cm(-3); R(1) = 4.32%. Crystal data for 3: monoclinic, P2(1)/n; T = 203 K; a = 15.950(3) A; b = 11.865(2) A; c = 18.254(3) A; beta = 92.323(3) degrees; V = 3451.9(10) A(3); Z' = 4; D(calcd) = 1.327 g cm(-)(3); R(1) = 4.43%. Crystal data for 4: triclinic, P1; T = 193 K; a = 10.2252(2) A; b = 11.3497(2) A; c = 18.5814(2) A; alpha = 98.7353(6) degrees; beta = 102.8964(6) degrees; gamma = 94.8058(5) degrees; V = 2062.09(5) A(3); Z' = 2; D(calcd) = 1.375 g cm(-3); R(1) = 4.56%. The molecular structures of 1-3 feature monomeric complexes with distorted trigonal-bipyramidal (1 and 2) or octahedral (3) coordination geometry about the metal atom, with the two chlorine atoms occupying the axial positions. 4 represents the first example of an alkoxide derivative of a terphenyl lanthanide complex. The molecular structure of the ate complex 4 exhibits a heavily distorted trigonal-bipyramidal coordination polyhedron about the ytterbium atom, with one of the mu-chlorine atoms and the oxygen atom of the tetrahydrofuran ligand representing the axial positions of the trigonal-bipyramidal arrangement. A terminal alkoxide ligand is another main feature of the molecular structure of complex 4.  相似文献   

9.
A new series of square planar Pt(II) complexes with the mer-coordinating tridentate ligand, pip(2)NCN(-) (pip(2)NCNH = 1,3-bis(piperdylmethyl)benzene), has been prepared: Pt(pip(2)NCN)Cl (2), Pt(pip(2)NCN)Br (3), Pt(pip(2)NCN)I (4), and [Pt(pip(2)NCN)(CH(3)N=C(CH(3))(2))][CF(3)SO(3)] (5). The complexes have been fully characterized by (1)H NMR spectroscopy, elemental analysis, and UV-vis spectroscopy. The X-ray crystal structures of pip(2)NCNBr (1), 2, and 5 are reported. Compound 1: triclinic, P, a = 10.081(1) A, b = 10.153(2) A, c = 10.390(1) A, alpha = 66.05(1) degrees, beta = 79.07(1) degrees, gamma = 64.51(1) degrees, V = 877.1(2) A(3), Z = 2. Complex 2: triclinic, P, a = 9.897(2) A, b = 10.191(2) A, c = 19.174(4) A, alpha = 75.09(3) degrees, beta = 76.14(3) degrees, gamma = 71.00(3) degrees, V = 1741.2(6) A(3), Z = 4. Complex 5: triclinic, P, a = 10.709(2) A, b = 11.2321(10) A, c = 12.447(2) A, alpha = 110.509(8) degrees, beta = 112.417(10) degrees, gamma = 91.066(9) degrees, V = 1276.1(3) A(3), Z = 2. In 77 K 3:1 EtOH/MeOH glassy solution, these colorless complexes exhibit weak red-orange to red emissions originating from a lowest spin-forbidden ligand field excited state.  相似文献   

10.
Radiopharmaceuticals containing the "fac-[M(CO)3]+ " core (M=99mTc, 186Re, or 188Re) have potential as diagnostic or therapeutic agents. Complexes with this core with sp3 amine donors have received little attention. We have studied adducts formed by ENDACH2 (HO2CCH2NHCH2CH2NHCH2CO2H) and ENACH (NH2CH2CH2NHCH2CO2H). Re(CO)3(ENDACH)-A (1A) and Re(CO)3(ENDACH)-B (1B) isomers were obtained by the reaction of ENDACH2 with Re(CO)5Cl. Re(CO)3(ENAC) (2) was obtained by the reaction of ENACH with aqueous [Re(CO)3(H2O)3]+. From single-crystal X-ray data, the three new neutral complexes, 1A, 1B, and 2, have a six-coordinate, pseudo-octahedral Re center with facially coordinated carbonyl ligands. ENDACH- and ENAC- bind facially to Re through both amine nitrogens and one carboxyl oxygen, forming two five-membered chelate rings. The Re(CO)3(ENDACH) isomers have an uncoordinated, dangling -CH2CO2H group, which is an ideal coupling site for attachment to biomolecules. The isomers differ by the configuration of the NH center bearing this dangling group. The H atom of the amine (N2) is endo (near the carbonyl ligands in the basal plane) in 1A and exo (away from carbonyl ligands) in isomer 1B. Isomers reach equilibrium (1A:1B, 70:30) after 3 days at high pH. Density functional structure optimizations were performed for isolated molecules of the type Tc(I)/Re(I)(CO)3(N2O): [Re(CO)3(NH3)2(H2O)]+, [Tc(CO)3(NH3)2(H2O)]+, [Re(CO)3(EN)(H2O)]+ (EN, ethylenediamine), [Tc(CO)3(EN)(H2O)]+, and various models for 1A, 1B, and 2. The computed structures are in good agreement with the X-ray structures. The theoretical and experimental Re-N bond distances usually agree within 0.045 A. The total electronic energy values for the computed 1A and 1B models differ by 0.815 kcal mol(-1), giving an isomer ratio of 80:20, in good agreement with the 1A/1B ratio (70:30) found.  相似文献   

11.
Cui Y  Ngo HL  Lin W 《Inorganic chemistry》2002,41(5):1033-1035
A new rigid angular bridging ligand, 7-oxa-dibenzofluorene-3,11-dicarboxylic acid (H(2)L), was synthesized by cyanation of known rac-6,6'-dibromo-1,1'-bi-2-naphthol followed by ring closure and hydrolysis with concentrated sulfuric acid and used for the self-assembly of nanoscopic molecular rectangle [Cu(4)(L)(4)(Py)(8)].2DMF.10H(2)O, 1, and 1-D coordination polymer [Co(2)(L)(2)(Py)(4)].2DMF.2H(2)O, 2. Both 1 and 2 contain open channels occupied by DMF and water guest molecules. Crystal data for 1:[?] triclinic, space group P(-)1, a = 8.869(2) A, b = 16.437(3) A, c = 21.586(4) A, alpha = 78.18(3), beta = 79.19(3), gamma = 83.66(3), U = 3017.0(11) A(3), and Z = 1. Crystal data for 2: triclinic, space group P(-)1, a = 8.254(2) A, b = 12.154(2) A, c = 15.348(3) A, alpha = 95.34(3), beta = 93.38(3), gamma = 94.37(3), U = 1525.1(5) A(3), and Z = 1.  相似文献   

12.
The molecular structures of terphenyl derivatives of trivalent ytterbium, thulium, and yttrium of general composition DnpLnCl(2)(THF)(2) [Dnp = 2,6-di(1-naphthyl)phenyl] are reported. The complexes (Ln = Yb: 1; Ln = Tm: 2; Ln = Y: 3) are synthesized by reaction of 1 equiv of DnpLi with 1 equiv of LnCl(3) (Ln = Yb, Tm, or Y) in tetrahydrofuran at room temperature in 50% yield. Attempts to prepare a Dnp scandium compound gave heterobimetallic [(THF)(3)Sc(2)OCl(5)Li(THF)](2) (4) in low yield. 1 crystallizes in the monoclinic space group C2/c. Crystal data for 1 at 203 K: a = 14.333(3) A, b = 16.353(3) A, c = 12.427(2) A, beta = 91.021(4) degrees, Z = 4, D(calcd) = 1.637 g cm(-3), R(1) = 4.44%. 2 crystallizes in the monoclinic space group C2/c. Crystal data for 2 at 203 K: a = 14.333(1) A, b = 16.374(2) A, c = 12.404(1) A, beta = 90.934(2) degrees, Z = 4, D(calcd) = 1.628 g cm(-3), R(1) = 3.00%. 3 crystallizes in the monoclinic space group C2/c. Crystal data for 3 at 203 K: a = 14.348(3) A, b = 16.476(3) A, c = 12.356(2) A, beta = 90.987(4) degrees, Z = 4, D(calcd) = 1.441 g cm(-3), R(1) = 5.62%. 4 crystallizes in the monoclinic space group P2(1)/n. Crystal data for 4 at 203 K: a = 11.0975(9) A, b = 11.0976(9) A, c = 21.3305(18) A, beta = 94.718(2) degrees, Z = 2, D(calcd) = 1.051 g cm(-3), R(1) = 3.45%. Complexes 1-3 represent examples of novel chiral (racemic) organometallic complexes of the lanthanide elements ytterbium and thulium and the group 3 element yttrium, respectively. The molecular structures of monomeric 1-3 exhibit distorted trigonal-bipyramidal coordination environments at the metal center, with the two oxygen atoms of the tetrahydrofuran ligands occupying the axial positions of a trigonal-bipyramidal coordination polyeder. The molecular structure of the scandium compound 4 shows a complex polynuclear heterobimetallic arrangement.  相似文献   

13.
在微波甲醇溶剂热中,正丁基三氯化锡(n-BuSnCl3)与双[4-二乙氨基或(3,5-二叔丁基)取代水杨醛]缩卡巴肼和缩硫代卡巴肼配体反应,合成双(取代水杨醛)缩卡巴肼和缩硫代卡巴肼丁基锡配合物,( n-BuSn) 2CI3(OH2)[(2-OH,R)PhCH=NNH]2CX[R:4-NEt2(4-二乙氨基),X:O(A1);R:4-NEt2,X:S(A2);R:3,5-(t-Bu)2,X:O(A3);R:3,5-(t-Bu)2,X:S(A4)],经元素分析、IR、1H 和 13C NMR表征,X射线衍射获得的配合物A2的晶体结构表明,化合物A2是具有六配位畸形八面体构型的双锡核配合物。 配体及其丁基锡配合物均对马齿苋、刺苋、四九菜心、苋菜和决明子靶标植物具有生长抑制作用,且配合物A1和A2具有较广谱、配合物A3和A4具有选择性生长抑制作用,可作为杂草生长抑制候选物研究。  相似文献   

14.
The syntheses and characterizations of a family of novel heteroleptic magnesium amide thiolates are presented. The compounds are synthesized by ligand redistribution chemistry involving reactions of equimolar amounts of magnesium amides and magnesium thiolates. Utilization of the smaller thiolates [Mg(SPh)2]n and [Mg(S-2,4,6-iPr3C6H2)2]n results in the isolation of dimeric species, [Mg(THF)(N(SiMe3)2)(mu-SR)]2 (R = Ph (1), 2,4,6-iPr3C6H2 (2)), with four-coordinate metal centers and bridging thiolate functions. The sterically more encumbered thiolate S-2,4,6-tBu3C6H2 induces the formation of the four-coordinate, monomeric species Mg(THF)2(N(SiMe3)2)(S-2,4,6-tBu3C6H2) (3)). Careful choice of reaction conditions allows the successful syntheses of pure heteroleptic compounds; however, it remains difficult to obtain the compounds in high yields, since a tendency toward product symmetrization and ligand redistribution under re-formation of the starting materials is prevalent. One of these symmetrized products is also included in this report: the dimeric, four-coordinate magnesium thiolate [Mg-(THF)(S-2,4,6-tBu3C6H2)(mu-S-2,4,6-tBu3C6H2)]2 (4), isolated as the product of the reaction between [Mg-(N(SiMe3)2)2]2 and Mg(THF)2(S-2,4,6-tBu3C6H2)2. All compounds were characterized by NMR and IR spectroscopy, elemental analyses, and X-ray crystallography. Crystal data obtained with Mo K alpha (lambda = 0.710 73 A) radiation are as follows. 1: C16H31MgNOSSi2, a = 11.2100(1) A, b = 17.4512(3) A, c = 11.2999(2) A, beta = 97.952(1) degrees, V = 2189.32(6) A3, Z = 4, monoclinic, space group P2(1)/n, R1 (all data) = 0.0934. 2: C25H49MgNOSSi2, a = 11.1691(1) A, b = 11.0578(1) A, c = 26.0671(4) A, beta = 99.906(1) degrees, V = 3171.44(6) A3, Z = 4, monoclinic, space group P2(1)/c, R1 (all data) = 0.0557. 3: C36H71MgNO3SSi2, a = 42.8293(16) A, b = 10.9737(5) A, c = 16.8305(7) A, beta = 98.755(3) degrees, V = 7818.1(6) A3, Z = 8, monoclinic, space group C2/c, R1 (all data) = 0.1331. 4: C80H132Mg2O2S4, a = 18.8806(2) A, b = 19.3850(2) A, c = 27.3012(4) A, beta = 97.250(1) degrees, V = 9912.4(2) A3, Z = 4, monoclinic, space group P2(1)/n, R1 (all data) = 0.1023.  相似文献   

15.
Four new organic/inorganic coordination polymers, [Cd(C(10)H(8)N(2))(2)(H(2)O)(2)(NO(3))(2)](n)(1), [Co(C(10)H(8)N(2))(H(2)O)NO(3)CH(3)OH](n)(2), [Cu(C(10)H(8)N(2))(CH(3)OH)(NO(3))(2)](n) (3), and [Cu(C(10)H(8)N(2))(hfac)(2)](n)(4), were synthesized by using the rigid ligand 1,2-bis(3-pyridyl)ethyne (3,3'-DPA). Complex 1 crystallizes in space group P2/n: a = 12.462(2) A, b = 9.485(1) A, c = 13.383(2) A, beta = 96.629(2) degrees, V = 1559.6(3) A(3), Z = 4. Complex 2 crystallizes in space group Fddd: a = 9.248(4) A, b = 19.982(7) A, c = 35.093(16) A, V = 6485.0(4) A(3), Z = 8. Complex 3 crystallizes in space group I2/a: a = 18.315(2) A, b = 8.517(1) A, c = 20.494(3) A, beta = 104.042(2) degrees, V = 3101.2(7) A(3), Z = 8. Complex 4 crystallizes in space group P21/c: a = 6.576(1) A, b = 16.189(1) A, c = 11.653(1) A, beta = 91.337(1) degrees, V = 1240.3(2) A(3), Z = 2. The coordination polymers display a variety of structural architectures, ranging from sinusoidal and zigzag chains (1, 3, 4) to two-dimensional channel-type architectures (2). The effects of the orientation of the nitrogen atom in the pyridine rings on the resultant structures are discussed.  相似文献   

16.
The use of salicylaldehyde oxime (H2salox) in iron(III) carboxylate chemistry has yielded two new hexanuclear compounds [Fe6(mu3-O)2(O2CPh)10(salox)2(L)2].xMeCN.yH2O [L = MeCONH2, x = 6, y = 0 (1); L = H2O, x = 2, y = 3 (2)]. Compound 1 crystallizes in the triclinic space group P with (at 25 degrees C) a = 13.210(8) A, b = 13.87(1) A, c = 17.04(1) A, alpha = 105.79(2) degrees , beta = 96.72(2) degrees , gamma = 116.69(2) degrees , V = 2578.17(2) A(3), and Z = 1. Compound 2 crystallizes in the monoclinic space group C2/c with (at 25 degrees C) a = 21.81(1) A, b = 17.93(1) A, c = 27.72(1) A, beta = 111.70(2) degrees , V = 10070(10) A(3), and Z = 4. Complexes 1 and 2 contain the [Fe6(mu3-O)2(mu2-OR)2]12+ core and can be considered as two [Fe3(mu3-O)] triangular subunits linked by two mu2-oximato O atoms of the salox2- ligands, which show the less common mu3:eta1:eta2:eta1 coordination mode. The benzoato ligands are coordinated through the usual syn,syn-mu2:eta1:eta1 mode. The terminal MeCONH2 ligand in 1 is the hydrolysis product of the acetonitrile solvent in the presence of the metal ions. M?ssbauer spectra from powdered samples of 2 give rise to two well-resolved doublets with an average isomer shift consistent with that of high-spin Fe(III) ions. The two doublets, at an approximate 1:2 ratio, are characterized by different quadrupole splittings and are assigned to the nonequivalent Fe(III) ions of the cluster. Magnetic measurements of 2 in the 2-300 K temperature range reveal antiferromagnetic interactions between the Fe(III) ions, stabilizing an S = 0 ground state. NMR relaxation data have been used to investigate the energy separation between the low-lying states, and the results are in agreement with the susceptibility data.  相似文献   

17.
A new compound [Cu(Ⅰ)(phen)2]5[HV15O36(Cl)]0.65[H3V16O38(Cl)]0.35·2H2O 1(phen = 1,10'-phenanthroline) has been prepared from the hydrothermal reaction of V2O5, CuCl,3:1:1:0.5:2.5:1400. Compound 1 crystallizes in the space group P42212 of the tetragonal system with a = b = 21.5009(8), c = 28.401(2) (A), V = 13129.5(12) (A)3, Z = 4, Dc = 1.800 g/cm3,μ(MoKα) =1.932 mm-1, λ.(MoKα) = 0.71073 (A), F(000) = 7063.4, C120H81.20ClCu5N20O38.7V15.35, Mr = 3557.58,the final R = 0.0594 and wR= 0.1320 for 7761 observed reflections (1 > 2σ(Ⅰ)). Structure analysis shows that 1 exhibits a 3D channel framework formed by the supramolecular assembly of Cu complexes and polyoxovanadate clusters via intermolecular hydrogen bonding, and the channels contain Cu complexes. Other characterizations by elemental analysis, XPS, IR, XRD and thermal analysis are also described.  相似文献   

18.
The interactions of Ga(2P:4s(2)4p1, 2S:4s(2)5s1, and 2P:4s(2)5p1) with CH4 is studied by means of Hartree-Fock self-consistent-field (SCF) calculations using relativistic effective core potentials and multiconfigurational-SCF plus multireference variational and perturbational on second-order M?ller-Plesset configuration interaction calculations. The Ga atom 2P(4s(2)5p1) state can spontaneously insert into the CH4. In this interaction the 4 2A potential energy surface is initially attractive and becomes repulsive only after meeting with the 3 2A surface, adiabatically linked with the Ga(2S:4s(2)5s1) + CH4 fragments. The Ga atom 2S(4s(2)5s1) excited state inserts in the C-H bond. In this interaction the 3 2A potential energy surface initially attractive, becomes repulsive after meet the 2 2A' surface linked with the Ga(2P:4s(2)4p1) + CH4 fragments. The two 2A curves (2 2A and X 2A) derived from the interaction of Ga(2P:4s(2)4p1) atoms with methane molecules are initially repulsive. The 2 2A curve after an avoided crossing with the 3 2A curve goes smoothly down and reaches a minimum: after this point, it shows an energy barrier. The top of this barrier is located below the energy value of the Ga(2S:4s(2)5s1) + CH4 fragments. After this energy top the 2 2A curve goes down to meet the X 2A curve. The 2 2A curve becomes repulsive after the avoided crossing with the X 2A curve. The X 2A curve becomes attractive only after its avoided crossing with the 2 2A curve. The lowest-lying X 2A potential leads to the HGaCH3 X 2A intermediate molecule. This intermediate molecule, diabatically correlated with the Ga(2S:4s(2)5s1) + CH4 fragments, which lie 6 kcal/mol, above the ground-state reactants, the dissociation channels of this intermediate molecule leading to the GaH + CH3 and H + GaCH3 products. These products are reached from the HGaCH3 intermediate without activation barriers. The work results suggest that Ga atom in the first excited state in gas-phase methane molecules could produce better quality a-C:H thin films through CH3 radicals, as well as gallium carbide materials.  相似文献   

19.
The ambidentate character of dimethyl sulfoxide, already known for dirhodium carboxylates, has been remarkably manifested in new ways. Three novel complexes of dirhodium(II) tetra(trifluoroacetate) with the DMSO ligand, namely, [Rh2(O2CCF3)4]m(DMSO)n with m:n = 7:8 (1), 1:1 (2), and 3:2 (3), have been obtained by deposition from the vapor phase, and their crystal structures have been determined by X-ray crystallography. The crystallographic parameters are as follows: for 1, monoclinic space group P2(1)/c with a = 28.261(2) A, b = 16.059(4) A, c = 17.636(2) A, beta = 92.40(4) degrees, and Z = 2; for 2, triclinic space group P1 with a = 8.915(2) A, b = 10.592(2) A, c = 11.916(2) A, alpha = 84.85(1) degrees, beta = 88.86(1) degrees, and gamma = 65.187(8) degrees, and Z = 2; and for 3, triclinic space group P1 with a = 8.876(2) A, b = 9.017(2) A, c = 19.841(3) A, alpha = 101.91(2) degrees, beta = 97.144(8) degrees, gamma = 100.206(9) degrees, and Z = 1. In the oligomeric molecule of 1, six DMSO ligands bridge seven dirhodium tetra(trifluoroacetate) units in a bidentate fashion via S and O atoms, and two additional DMSO molecules terminate the chain. In the structure of the monoadduct Rh2(O2CCF3)4(DMSO) (2), the dirhodium blocks are bridged through the O atoms of DMSO ligands, forming a one-dimensional polymeric chain. Compound 3 also has an infinite chain structure with the molecules of dimethyl sulfoxide acting in a bidentate mu-DMSO-S,O mode. Every second DMSO molecule is missing in 3, so that two of every three Rh2(O2CCF3)4 units are associated through the O atoms of carboxylate groups to give the overall composition [Rh2(O2CCF3)4]3(DMSO)2.  相似文献   

20.
The reaction of [Ru(eta-Cp)(dppf)N(3)] (1) with equimolar amount of SnBr(2) yielded an interesting heterotrimetallic compound [Ru(eta-Cp)(dppf)SnBr(3)] (2) (dppf: 1,1'-bis-diphenylphosphinoferrocene). Compounds 1 and 2 were characterised by IR, NMR (1H, 13C, 31P and 119Sn), and 2, additionally, by 57Fe and 119Sn M?ssbauer spectroscopy and X-ray crystallography. The latter results were as follows: monoclinic, C2/c, a = 32.8879(4)A, b = 11.9888(2)A, c = 20.8986(3)A, beta = 92.545(1)degrees, V = 8231.9(2)A(3), Z =8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号