首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A novel class of rare-earth-doped solid-state lasers is described. The ground-state depleted laser is pumped by an intense (more than tens of kW cm–2) narrow-band (less than a few nm) laser source and is characterized by: (1) an unusually low laser ion doping density (5 to 10×1018ion cm–3), (2) an unusually large fractional excited population inversion density (4 to 8×1018 ion cm–3, or >75%), (3) a gain element that is optically thick at the pump wavelength and (4) a gain element that has a substantially uniform gain distribution due to a bleaching of the pump transition at the pump intensity utilized. These features enable efficient room-temperature operation of rare-earth-ion laser transitions terminating on the ground manifold. The relationships between laser parameters (cross-sections, saturation fluences and fluxes, bleaching wave velocities, etc.) are given and laser performance scaling relationships are presented and discussed.  相似文献   

2.
The absolute Raman scattering cross sections (σRS) for the 471, 217, and 153 cm−1 modes of sulfur were measured as 6.0 ± 1.2 × 10−27, 7.7 ± 1.6 × 10−27, and 1.2 ± 0.24 × 10−26 cm2 at 815, 799, and 794 nm, respectively, using a 785‐nm pump laser. The corresponding values of σRS at 1120, 1089, and 1081 nm were determined to be 1.5 ± 0.3 × 10−27, 1.2 ± 0.24 × 10−27, and 1.2 ± 0.24 × 10−27 cm2 using a 1064‐nm laser. A temperature‐controlled, small‐cavity (2.125 mm diameter) blackbody source was used to calibrate the signal output of the Raman spectrometers for these measurements. Standoff Raman detection of a 6‐mm‐thick sulfur specimen located at 1500 m from the pump laser and the Raman spectrometer was made using a 1.4‐W, CW, 785‐nm pump laser. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The absolute Raman scattering cross section (σRS) for the 1584‐cm−1 band of benzenethiol at 897 nm (1.383 eV) has been measured to be 8.9 ± 1.8 × 10−30 cm2 using a 785‐nm pump laser. A temperature‐controlled, small‐cavity blackbody source was used to calibrate the signal output of the Raman spectrometer. We also measured the absolute surface‐enhanced Raman scattering cross section (σSERS) of benzenethiol adsorbed onto a silver‐coated, femtosecond laser‐nanostructured substrate. Using the measured values of 8.9 ± 1.8 × 10−30 and 6.6 ± 1.3 × 10−24 cm2 for σRS and σSERS respectively, we calculate an average cross‐section enhancement factor (EF) of 0.8 ± 0.3 × 106. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The formation conditions and dynamics of Ca colloids and point defects that appear in irradiated single crystals of CaF2 were investigated by Raman spectroscopy. The intensity changes in the Raman spectra because of the presence of different concentrations of point defects and Ca colloids that emerged in CaF2 after irradiation with 2.2 GeV Au ions were used to study their distribution and stability under illumination with three laser wavelengths (473, 532 and 633 nm) at different output powers (2 to 200 mW). A damage saturation at a fluence of 6 × 1011 ion cm−2 was observed. The dependence of the spectral changes on the ion fluence can be described by a core/halo damage cross‐section model. A radius of 13–18 nm was obtained for the outer (halo) cylinder, in agreement with previous swelling studies. Illuminations of irradiated samples with blue (473 nm) and green (532 nm) lasers were found to be extremely efficient in bleaching the samples, while illumination with a red (633 nm) laser did not lead to a sample recovery. This indicates that the bleaching process is governed by recombination of point defects that have to overcome an energy barrier. Typical time constants for the processes involved are presented. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The photon energy of the luminescence between spatial separated n- and p-type doped layers of GaAs doping superlattices shifts with excitation density. At room temperature we observe a shift of the luminescence maximum in samples with high doping concentrations (n=4×1018cm−3), whereas for n=1×1018cm−3 this shift is observed at temperatures below 150K only. Temperature-dependent measurements between 4 and 700K show that the tunability disappears near a critical temperature, which is proportional to the doping concentration. A simple model including thermally activated direct transitions and tunable luminescence describes this temperature dependence.  相似文献   

6.
Thomson scattering from a low electron density (3×1012cm?3) stationary hydrogen plasma was performed using a 3 watt CW argon ion laser along with a photon counting technique. An estimation is given for the laser power required for CW Thomson scattering in pulsed plasma experiments.  相似文献   

7.
The gain saturation in the 46.9 nm line of the Ar+8 laser is analyzed using an atomic kinetics code. The dependence of the gain (G) on the electron kinetic temperature (Te) in the region (50 ‐150 eV) is calculated in the quasi steady‐state approximation for the different values of the electron density (Ne) and the plasma radius (rpl). The influence of radiat on trapping, ion random and mean velocities, Stark line broadening and refraction losses on the gain saturation is taken into consideration. For rpl = 150‐600 μm, the amplplication (G > 0 cm‐1) exists in the large temperature/density domain (Te = 60‐150 eV, Ne = 0.5‐10 × 1018 cm‐3). However, the value Gs ∼ 1.4 cm‐1 required for the gain saturation at the typical plasma length Lpl ∼ 15 cm is reached in the extremely narrow density regions at the high temperatures. The saturation is reached for rpl = 600 μm at Tse = 150 eV in the region Nse = 1.8‐2 × 1018 cm ‐3, for rpl = 300 μm at Tse = 125 eV and Nse = 2.5‐3 × 1018 cm‐3, and for rpl = 150 μm at Tse = 110 eV and Nse = 3‐4 × 1018 cm‐3. The broadest density region (Nse = 2 ‐8 × 1018 cm‐3) is predicted for the narrowest column (rpl = 150 μm) at the highest temperature (Tse = 150 eV). The operation in the broadest density region Nse, should make easier achievement of the gain saturation in the experiments.  相似文献   

8.
PbTe/CdTe量子点的光学增益   总被引:2,自引:0,他引:2       下载免费PDF全文
徐天宁  吴惠桢  斯剑霄 《物理学报》2008,57(4):2574-2581
PbTe/CdTe量子点是一类新型异系低维结构材料,实验发现具有强的室温中红外光致发光现象.为研究这一材料体系的发光特性,建立了理论模型,计算了PbTe/CdTe量子点的光学跃迁和增益.模型基于k·p包络波函数方法并考虑了PbTe能带结构的各向异性.分析了量子点光学增益与量子点尺寸、注入载流子浓度的关系.结果表明,当注入载流子浓度在(0.3—3)×1018cm-3范围时,尺寸为15—20nm的量子点可以产生 关键词: PbTe/CdTe量子点 光学增益 铅盐矿半导体  相似文献   

9.
Femtosecond stimulated Raman spectroscopy (FSRS) has emerged as a powerful new technique that is capable of obtaining resonance Raman spectra of fluorescent species and transient photochemical intermediates. Unlike related transient infrared absorption techniques, the FSRS signal is quite sensitive to the laser power utilized in the vibrational probing event. In particular, FSRS spectra are highly sensitive to the intensity of the picosecond Raman‐pump pulse. We have measured the power dependence of the FSRS signal using pulse energies from ~10−9 to ~10−5 J and molecules with a range of molar absorptivities at the Raman‐pump wavelength of 400 nm, including β‐carotene (ε400 = 58 300 M−1 cm−1), para‐nitroaniline (17 800 M−1 cm−1), nitronaphthalene (247 M−1 cm−1) and ferrocene (57 M−1 cm−1). We show that for strongly absorbing molecular systems, such as β‐carotene and para‐nitroaniline, the ground‐state (GS) FSRS signal actually decreases with increasing pump power at pump fluences above ~10−2 J cm−2, due to depletion of the GS population. However, for weakly absorbing species like nitronaphthalene and ferrocene, the signal increases linearly with increasing pump fluence until ~0.5 J cm−2, at which point two‐photon absorption by the solute induces nonlinear absorption of the pump pulse and attenuation of the FSRS signal. The data are quantitatively simulated with a photophysical kinetic model, and the results are analyzed to provide simple guidelines for acceptable Raman‐pump powers in resonance FSRS experiments. The acceptable Raman‐pump power is proportional to the focused beam area and depends inversely on the sample's molar absorptivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Time-resolved measurements, together with spectroscopic study with a grating monochromator, are made on far-infrared stimulated emission from p-Ge in crossed electric and magnetic fields. Gain saturation is confirmed, for the first time, to occur to establish laser oscillation. Small-signal gain per unit length deduced from the time constant of light amplification is 7.4 × 10-3 cm-1 and 2.7 × 10-2 cm-2, respectively, for samples with NAND ≅ 4.5 × 1013cm−3 and 1.7 × 1014 cm-3. Output power detected at distance 28 cm from the sample is of order 1–10 W, but higher power over 100W is suggested for the total output from the sample.  相似文献   

11.
Doping superlattices show tunable optical and electrical properties due to the space charge induced separation of photoexcited or electrically injected carriers. We have investigated the tunable luminescence in GaAs doping superlattices of doping levels n=1×1018cm−3 and n=4×10 18cm−3 as function of excitation density and sample temperature. The temperature dependence of the tunability was investigated in the range between 4 and 700K, and we found the critical transition temperatures T0 at 90 and 460K for the low and high doped samples, respectively. The results verify the theoretical prediction concerning the transition temperature at which the luminescence changes from full to zero tunability.  相似文献   

12.
The energy distributions of protons emitted from the Coulomb explosion of hydrogen clusters by an intense femtosecond laser have been experimentally obtained. Ten thousand hydrogen clusters were exploded, emitting 8.1-keV protons under laser irradiation of intensity 6 × 1016W/cm2. The energy distributions are interpreted well by a spherical uniform cluster analytical model. The maximum energy of the emitted protons can be characterized by cluster size and laser intensity. The laser intensity scale for the maximum proton energy, given by a spherical cluster Coulomb explosion model, is in fairly good agreement with the experimental results obtained at a laser intensity of 1016–1017 W/cm2 and also when extrapolated with the results of three-dimensional particle simulations at 1020–1021 W/cm2. Energetic proton generation in low-density plastic (C5H10) foam by intense femtosecond laser pulse irradiation has been studied experimentally and numerically. Plastic foam was successfully produced by a sol-gel method, achieving an average density of 10 mg/cm3. The foam target was irradiated by 100-fs pulses of a laser with intensity 1 × 1018 W/cm2. A plateau structure extending up to 200 keV was observed in the energy distribution of protons generated from the foam target, with the plateau shape explained well by Coulomb explosion of lamella in the foam. The laser-foam interaction and ion generation were studied qualitatively by two-dimensional particle-in-cell simulations, which indicated that energetic protons are mainly generated by the Coulomb explosion. From the results, the efficiency of energetic ion generation in a low-density foam target by Coulomb explosion is expected to be higher than in a gas-cluster target.  相似文献   

13.
We demonstrate the instability-free ion acceleration regime by introducing laser control with two parallel circularly polarized laser pulses at an intensity of I = 6.8 × 1021?W/cm2, normally incident on a hydrogen foil. The special structure of the equivalent wave front of those two pulses, which contains Gaussian peaks in both sides and a concavity in the centre (2D), can suppress the transverse instabilities and hole boring effects to constrain a high density ion clump in the centre of the foil, leading to an acceleration over a long distance and gain above 1GeV/u for the ion bunches.  相似文献   

14.
The development and characterization of a compact pulsed mid-IR laser source for sensitive on-line trace-gas analyses in the 3–4 μm wavelength range is reported. The source is based on an advantageous difference-frequency mixing configuration in periodically poled LiNbO3 (PPLN) with a cw external-cavity diode laser (ECDL; 810–830 nm) for broad and accurate tunability and a diode-pumped passively Q-switched Nd:YAG laser (1064 nm) for high mid-IR peak power. With 5 mW cw pump and 4.7 kW signal peak power incident on a 19 mm long PPLN crystal, a maximum of 360 μW mid-IR peak power was generated. The narrowband (∼150 MHz) radiation was saturated by a factor of 15 compared with the nonsaturated case due to depletion of the pump laser radiation. This results in a very high amplitude stability of the generated mid-IR power and thus in a high detection sensitivity. A minimum detectable absorption coefficient of 2.8×10−8 cm−1 was achieved in combination with a 36.2 m multipass cell in an averaging time of 20 s, as demonstrated by on-line analyses of formaldehyde traces near 3.53 μm.  相似文献   

15.
By focusing 40-TW, 30-fs laser pulses to the peak intensity of 1019 W/cm2 onto a supersonic He gas jet, we generate quasi-monoenergetic electron beams for plasma density in the specific range 1.5×1019 cm-3≤ne≤3.5×1019 cm-3. We show that the energy, charge, divergence and pointing stability of the beam can be controlled by changing ne, and that higher electron energies and more stable beams are produced for lower densities. The observed variations are explained physically by the interplay among pump depletion and dephasing between accelerated electrons and plasma wave. Two-dimensional particle-in-cell simulations support the explanation by showing the evolution of the laser pulse in plasma and the specifics of electron injection and acceleration. An optimized quasi-monoenergetic beam of over 300 MeV and 10 mrad angular divergence is demonstrated at a plasma density of ne≃1.5×1019 cm-3. PACS 52.35.-g; 52.38.Hb; 52.38.Kd; 52.65.-y  相似文献   

16.
Gain characteristics of a photolytically driven XeF(C–A) laser amplifier are studied experimentally in the unsaturated amplification regime. The gaseous active medium is optically pumped by vacuum-ultraviolet (VUV) radiation from two large-area multichannel surface discharges initiated along opposite walls of the amplifier chamber. A total gain factor of 102 is obtained for the ultrashort optical pulses under multipass amplification in the active volume of 40?×?18?×?4 cm3 dimensions with a spatially homogeneous gain distribution. Spectral measurements reveal a good conservation of the seed pulse spectrum. Small-signal gain reaching 2×10-3 cm-1 is observed for the blue-green seed pulses of 150 fs duration, as well as for the continuous seed radiation at 488 nm. The obtained gain values, being compared with the gain calculated for the measured pumping radiation power, indicate that the quantum yield of the XeF(B) formation as a result of the XeF2 photodissociation is high and approaches unity within the spectral band of the XeF2 VUV photodissociation continuum.  相似文献   

17.
Abstract

Two LiNbO3 (X and Y cut) crystals from different companies were implanted by 3.0 MeV Er ions to a dose of 7.5 × 1014 ions/cm2 and 3.5 × 1014 ions/cm2 with different beam current densities, respectively. After annealing at 1060°C in air for 2 hours, one LiNbO3 sample was implanted by 1.5 MeV He ions to a dose of 1.5 × 1016 ions/cm2. The Rutherford backscattering/channeling and prism coupling method have been used to study the damage and optical properties in implanted LiNbO3. The results show: (1) the damage in LiNbO3 created by 3.0 MeV Er ions depends strongly on the beam current density; (2) after annealing at 1060°C in air for 2 hours, a good Er doped LiNbO3 crystal was obtained; (3) there is waveguide formation possible in this Er-doped annealed LiNbO3 after 1.5 MeV He ion implantation. It is suggested that annealing is needed to remove the damage created by MeV Er ions before the MeV He ion implantation takes place, to realize the waveguide laser for Er doped LiNbO3.  相似文献   

18.
A sequential three-dimensional (3D) particle-in-cell simulation code PICPSI-3D with a user friendly graphical user interface (GUI) has been developed and used to study the interaction of plasma with ultrahigh intensity laser radiation. A case study of laser–plasma-based electron acceleration has been carried out to assess the performance of this code. Simulations have been performed for a Gaussian laser beam of peak intensity 5 × 1019 W/cm2 propagating through an underdense plasma of uniform density 1 × 1019 cm − 3, and for a Gaussian laser beam of peak intensity 1.5 × 1019 W/cm2 propagating through an underdense plasma of uniform density 3.5 × 1019 cm − 3. The electron energy spectrum has been evaluated at different time-steps during the propagation of the laser beam. When the plasma density is 1 × 1019 cm − 3, simulations show that the electron energy spectrum forms a monoenergetic peak at ~14 MeV, with an energy spread of ±7 MeV. On the other hand, when the plasma density is 3.5 × 1019 cm − 3, simulations show that the electron energy spectrum forms a monoenergetic peak at ~23 MeV, with an energy spread of ±7.5 MeV.  相似文献   

19.
Abstract

We have observed the quadratic laser power dependence of two anti-Stokes emission bands at 15100cm?1 and 14000cm?1 in an additively colored KCl when excited with a Nd:YAG laser. The cross section of two photon absorption to cause the 14000cm?1 band is estimated to be 4×10?40cm4sec. We have observed that emission intensities are dependent on temperature in the range between 4. 2K and 130K. They are enhanced by means of optical bleaching and also with the increase of the F concentration. From a qualitative analysis of these observations, we propose that these emissions are correlated to the loose aggregation of the F centers.  相似文献   

20.
Abstract

The amorphization process of GaP by ion implantation is studied. The samples of 〈111〉 oriented GaP were implanted at 130 K with various doses 5 × 1013-2 × 1016 cm?2 of 150 keV N+ ions and with the doses of 6 × 1012-1.5 × 1015 cm?2 of 150 keV Cd+ ions. Room temperature implantations were also performed to see the influence of temperature on defect production. Rutherford backscattering and channelling techniques were used to determine damage in crystals. The damage distributions calculated from the RBS spectra have been compared with the results of Monte-Carlo simulation of the defect creation.

The estimated threshold damage density appeared to be independent on ion mass and is equal 6.5 × 1020 keV/cm3. It is suggested that amorphization of GaP is well explained on the basis of a homogenous model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号