首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Increasing miniaturization of high speed multi-functional electronics demands ever more stringent thermal management. The present work investigates experimentally and numerically the use of staggered perforated pin fins to enhance the rate of heat transfer in these devices. In particular, the effects of the number of perforations and the diameter of perforation on each pin are studied. The results show that the Nusselt number for the perforated pins is 45 % higher than that for the conventional solid pins and it increases with the number of perforation. Pressure drop with perforated pins is also reduced by 18 % when compared with that for solid pins. Perforations produce recirculations in the xy as well as the xz planes downstream of the pins which effectively increase convective heat transfer. However, thermal dissipation decreases significantly when the ratio of pin diameter to perforation diameter exceeds 0.375. This is due to both a reduction in the number of perforation per pin and the decrease in the axial heat conduction along the pin.  相似文献   

2.
A rotating channel with staggered pin‐fins is formulated numerically and optimized for performance (heat transfer/required pumping power) using a Kriging meta‐model and hybrid multi‐objective evolutionary algorithm. Two design variables related to cooling channel height, pin diameter, and spacing between the pins are selected for optimization, and two‐objective functions related to the heat transfer and friction loss are employed. A design of experiment is performed, and 20 designs are generated by Latin hypercube sampling. The objective function values are evaluated using a Reynolds‐averaged Navier–Stokes solver, and a Kriging model is constructed to obtain a Pareto‐optimal front through a multi‐objective evolutionary algorithm. Rotation in a cooling channel with staggered pin‐fins induces Coriolis force that causes a heat transfer discrepancy between the trailing (pressure) and leading (suction) surfaces, with a higher Nusselt number on the trailing surface. The tradeoff between the two competing objective functions is determined, and the distribution of the Pareto‐optimal solutions in the design space is discussed through k‐means clustering. In the optimal designs, with a decrease in spacing between the pins, heat transfer is enhanced whereas friction loss is increased. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
 The convective heat transfer from fins to air has been evaluated using rotating annular fins subjected to an air flow parallel to the fins. The fin cooling is studied using infrared thermography. The thermal balance in a fin during its cooling process allows us to obtain the heat transfer coefficient from the temperature time evolution of the fin. Moreover, Particle Image Velocimetry allows us to obtain the flow field in the mid-plane between two fins. The influence of the fin spacing on the convective heat transfer is studied for various velocities of the superposed air flow and various fin rotational speeds. These tests were carried out for air flow Reynolds numbers (based on the shaft diameter and the velocity of the superposed air flow) between 2550 and 18200 and rotational Reynolds numbers (based on the shaft diameter and the peripheral speed) between 800 and 2.9 × 104, for different fin spacings. Received: 14 May 1999/Accepted: 8 October 1999  相似文献   

4.
A micro heat exchanger (MHE) can effectively control the temperature of surfaces in high heat flux applications. In this study, several turbulence models are analyzed using a 3D finite element model of a MHE. The MHE consists of a narrow planar flow passage between flat parallel plates with small cylindrical pin fins spanning these walls. The pin fin array geometry investigated is staggered, with pin diameters of 0.5, 5.1 and 8.5 mm, height to diameter ratio of 1.0 and streamwise (longitudinal) and spanwise (transverse) to diameter ratios of 1.5 and 2.5, respectively. Pressure loss and heat transfer simulated results for 4,000 ≤ Re ≤ 50,000 are reported and compared with previously published numerical and experimental results. It was found that the flat micro pin fin overall thermal performance always exceeds that of the parallel plate counterpart (smooth channel) by a factor of as much as 2.2 for the 8.5 mm diameter pins, and by 4 for the 0.5 mm diameter pins in the investigated Reynolds number range. Further, among the six turbulence models investigated, the RNG model tends to be the best model to predict both the Nusselt number and the friction factor and capture the main feature of the flow field in MHE.  相似文献   

5.
This work aims at understanding the flow and heat transfer through a microcavity populated with micropins, representing a layer of a 3D integrated electronic chip stack with integrated cooling. The resulting vortex shedding behavior and its effect on the heat removal is analyzed in the Reynolds number (Re) range from 60 to 450. The lateral confinement, expressed as the ratio of diameter to lateral distance between two cylinders’ centers, is varied between 0.1 and 0.5; the longitudinal confinement (diameter to longitudinal distance between two cylinders’ centers) between 0.25 and 0.5; and vertical confinement (diameter to microcavity height ratio) between 0.1 and 0.5. For a single pin, as the lateral confinement is increased, the Strouhal number (St) and the shedding frequency increase by up to 100%. The thermal performance represented by the spatiotemporal averaged Nusselt number (Nu), based on the average pin surface and fluid temperatures, is also enhanced by over 30%. A direct relationship between Nu and the shedding frequency was found. For a row of pins, Nu in the vortex shedding regime was found to be up to 300% higher compared to the steady case. A decrease in the longitudinal confinement, tested with rows of pins (either with 50 or 25 pins) in the streamwise direction, led to an upstream migration of the vortex shedding location and in more homogeneous but higher wall temperatures. This coincided with a drastic reduction of pressure losses and a 30% Nu enhancement for the same pumping power. Finally, the vertical confinement is also investigated with 3D simulations around a single cylinder. With increasing Re and vertical confinement, the wake becomes strongly three-dimensional. For a given Re, the increase of vertical confinement naturally shows a suppression or even a complete elimination of the vortex shedding due to a strong end-wall effect. Our results shed light on the effects of confinement on vortex shedding and related heat transfer in the integrated cooling of 3D chip stacks.  相似文献   

6.
It has been experimentally researched that convective heat transfer and pressure loss characteristics in rectangular channels with staggered arrays of drop-shaped pin fins in crossflow of air. The effects of arrangements of pin fins on heat transfer and resistance are discussed and the row-by-row variations of the mean Nusselt numbers are presented. By means of the heat/mass transfer analogy and the naphthalene sublimation technique, the heat transfer coefficients on pin fins and on endwall (base plate) of the channel have been achieved respectively. The total mean heat transfer coefficients of pin fin channels are calculated and the resistance coefficients are also investigated. The experimental results show that heat transfer of a channel with drop-shaped pin fins is higher than that with circular pin fins while the resistance of the former is much lower than that of the latter in the Reynolds number range from 900 to 9000. Received on 20 January 1997  相似文献   

7.
The present article investigates the effect of locally variable heat transfer coefficient on the performance of extended surfaces (fins) subject to natural convection. Fins of different profiles have been investigated. The fin profiles presently considered are namely; straight and pin fin with rectangular (constant diameter), convex parabolic, triangular (conical) and concave parabolic profiles and radial fins with constant profile with different radius ratios. The local heat transfer coefficient was considered as function of the local temperature and has been obtained using the available correlations of natural convection for each pertinent extended surface considered. The performance of the fin has been expressed in terms of the fin efficiency. Comparisons between the present results for all fins considered and the results obtained for the corresponding fins subject to constant heat transfer coefficient along the fin are presented. Comparisons, i.e. showed an excellent agreement with the experimental results available in the literature. Results show that there is a considerable deviation between the fin efficiency calculated based on constant heat transfer coefficient and that calculated based on variable heat transfer coefficient and this deviation increases with the dimensionless parameter m.  相似文献   

8.
Friction factors of square arrays of roughened pins in smooth channels have been measured for a range of pin pitch to diameter ratios and roughness heights and for different sizes of array. The influence of the smooth channel has been removed in two ways; by extrapolating the results for a fixed pitch-to-diameter ratio to an infinite number of pins and by calculation from the finite array results. The resultant friction factors are compared with each other and with data obtained by testing single pins in smooth circular channels and transforming by various methods to the fully rough situation.  相似文献   

9.
籍远明 《实验力学》2012,27(2):244-248
为了研究锚固体力-热耦合机制,分别对不同类型的锚固体加载变形破坏过程进行试验研究。应用红外热像技术,获得红外温度场,同时对锚固体进行应力场数值分析。结果显示:中心位置布置单根锚杆的锚固体;应力峰值前,随着荷载的增加,红外温度场呈现整体均匀性升温变化;应力峰值后,在锚杆周围形成一个由多条不同等温线组成的区域,其形状是以锚杆为中心的近似圆形区域,由内向外,温度逐步降低;有锚杆一侧围岩红外温度高于无锚杆一侧,锚杆周围形成一个近似"喇叭"状的等温线图,高温等温线对应高应力区,低温等温线对应低应力区,红外温度场与应力场之间存在空间分布对应关系。  相似文献   

10.
This paper investigates the heat transfer characteristics from thin strips pin fins due to their exposure to a single circular downward air jet impingement. Five aluminum specimens were considered; each one has a rectangular base of 84 mm × 78 mm and it has an array of about 300 thin strips pin fins. A test rig consists mainly of air compressor; nozzle and protractor mechanism was setup. Experiments were done to find out the effects of attack angle, Reynolds number, nozzle-to-target spacing, lateral pitch and parallel pitch among the fins on the heat transfer characteristics. Empirical correlations were deduced to describe the experimental data. A CFD-numerical model was introduced to monitor the flow characteristics on a scale of more details than that possible in the experimental work. The comparison among the results of the present work and those by the literature shows about 50% improvement in heat transfer characteristics rather than the single jet impingement onto flat plates, cylindrical surfaces, ribbed walls and multiple jets impingement onto flat plates.  相似文献   

11.
Longitudinal vortices disrupt the growth of the thermal boundary layer, thereby the vortex generators producing the longitudinal vortices are well known for the enhancement of heat transfer in compact heat exchangers. The present investigation determines the heat transfer characteristics with secondary flow analysis in plate fin triangular ducts with delta wing vortex generators. This geometrical configuration is investigated for various angles of attack of the wing i.e. 15°, 20°, 26° and 37° and Reynolds numbers 100 and 200. The constant wall temperature boundary condition is used. The solution of the complete Navier Stokes equation and the energy equation is carried out using the staggered grid arrangement. The performance of the combination of triangular secondary fins and delta wing with stamping on slant surfaces has also been studied. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Experimental studies on flow visualization and heat transfer measurements of finned surface in a narrow duct were carried out to understand the flow behavior and its effect on heat transfer. In this experiment, short rectangular fins were attached to a surface (endwall) with having inclination angle of 20° and exposed to air flow. Several flow visualization results reveal that horse shoe vortex was formed just at the front of the fin whereas the main longitudinal vortex was formed by the side top edge of the fin. Some important features of the vortex structure, size and flow reattachment positions were noticed from the smoke flow visualization. Detailed heat transfer distributions were discussed from the thermal image. Nusselt number shows that the finned surface achieved average heat transfer enhancement at a factor of four times than that of without fins.  相似文献   

13.
Local heat transfer from an impinging high temperature jet is studied using a method based on the heat thin foil technique and on the infrared thermography. Heat thin foil technique is used to impose several heat fluxes. For each flux, the temperature distribution is recorded using infrared imaging. Local heat transfer coefficients and adiabatic wall temperatures are determined by means of a linear regression method. This procedure is validated for a single round jet impinging on a flat plate for a range of injection temperatures. To cite this article: M. Fénot et al., C. R. Mecanique 333 (2005).  相似文献   

14.
疲劳特性的红外热像定量分析方法研究进展   总被引:1,自引:0,他引:1  
定量红外热像法, 作为一种无损、全场、实时、非接触的测试手段, 不仅能够用于对材料内部缺陷的无损检测, 而且能够对在役结构的疲劳损伤演化状态进行识别. 定量红外热像法还能够快速预测材料的疲劳极限和S-N (stress-number of cycles) 曲线, 实验周期短, 成本低. 文中较为系统地综述了定量红外热像法的发展现状及应用, 讨论了定量红外热像法应用过程中的几个重点问题. 最后总结展望了定量红外热像法的未来发展方向及应用前景.  相似文献   

15.
Three-dimensional laminar forced convection including steady-periodic transition is investigated up to periodic-chaotic transition in the fully developed region of coolant passages with staggered arrays of pin fins. Comparative examples concern overall pressure losses and heat transfer characteristics of circular, square and elliptical pins made of nickel and copper. In the numerical model, transient conjugate heat transfer is assumed and space periodicities in pressure, velocity components and temperatures are taken into account. In the range of operative conditions investigated, overall friction factors increase almost linearly with the Reynolds number, while the increase of overall Nusselt numbers with the Reynolds number is characterized by two slope changes connected with the onset of streamwise vortices, and the shedding of transverse vortices, respectively. The use of copper, instead of nickel, increases the overall Nusselt number with all shapes, but is particularly beneficial to the elliptical section. Square pins are characterized by the highest values of friction factors, but are also the best performers as far as convection enhancing is concerned. The reverse is true for the elliptical pins which are characterized by the lowest values of friction factors, but are the worst performers as far as convection enhancing is concerned. On the basis of overall performances, the elliptical pins made of copper are the best choice, at least in the upper range of Reynolds numbers investigated.  相似文献   

16.
销-盘摩擦磨损试验中聚醚醚酮试销的温度场测定   总被引:3,自引:3,他引:0  
销-盘摩擦磨损试验中聚醚醚酮(PEEK)试销的摩擦温度场测量结果表明,摩擦时其圆截面内的同一圆周上温度近似均匀,当PV值增大时,所测截面上的平均温度升高,当进行强迫降温时,温度始终维持在一定值上而不继续不高,表明摩擦磨损在恒定温度下进行。  相似文献   

17.
Natural convection heat transfer from a vertical isothermal plate with pin fins is numerically studied by solving the Navier–Stokes equations along with the energy equation. The average Nusselt number for the plate with different configurations of pin fins is obtained. The average Nusselt number is found to increase with increasing aspect ratio of the fin and to decrease with increasing angle of fin inclination with respect to the plate. There is only a minor difference between the average Nusselt numbers for in-line and staggered arrangement of fins for the range of parameters studied in the present work. A correlation is developed to predict the average Nusselt number of the plate as a function of fin spacing in the streamwise and spanwise directions, aspect ratio of the fin, and its angle of inclination.  相似文献   

18.
This paper is focused on the influence of the geometry of an interface seal gap on the aerodynamic and thermal performance of a rotor blade cascade. Tests are performed in a seven-blade cascade of a gas turbine high-pressure subsonic rotor at low Mach number (Ma2is = 0.3). To simulate some of the effects of rotation on the seal flow exiting the gap on a linear cascade environment, a number of fins are installed inside the slot, providing the coolant flow with an injection angle in the tangential direction. Tests are carried out at variable blowing conditions and different gap widths. Moreover, the influence of a radial misalignment between stator and rotor platforms is also investigated for variable injection conditions. The 3D flow field is surveyed by traversing a 5-hole miniaturized pressure probe in a downstream plane. Secondary flows velocities, loss coefficient and vorticity distributions are presented for the most relevant test conditions. Film cooling effectiveness distributions on the platform are obtained by Thermochromic Liquid Crystals technique. Results show that engine purge flow injection conditions have to be reproduced in the wind tunnel as close as possible, in order to get the correct blade aero-thermal performance.  相似文献   

19.
To determine a machine’s mechanical condition it is of importance to know the radial bearing forces in the machine. Radial forces are caused by magnetic pull forces in the generator, clamped shafts, mass unbalance and flow properties around the turbine. Measuring the shaft displacement in the bearing or the bearing housing acceleration is not sufficient for status determination of a vertical hydropower unit. It is the magnitude and frequencies of the radial forces in combination with structure properties which give information as to whether a measured value is harmful or not. This paper presents an alternative method for measurement of radial bearing load in a hydropower unit. The method presented in this paper is based on strain measurements on pivot pins. The pivot pins are placed behind the bearing pad and the radial loads acting on the pad propagate through the pivot pin. New pivot pins were purchased and equipped with strain gauges. The new pivot pins were calibrated and a transfer function between applied load and measured output voltage was identified for each pivot pin. After calibration the pivot pins were installed in a vertical hydropower unit. Measurements were performed for several different operating modes of the hydropower unit. To verify that the measured load levels were of right order of magnitude, the radial bearing loads were calculated from numerical simulations of bearing properties and shaft eccentricity measurements. The two methods for determining bearing load showed almost the same results. This indicates that either method can be used to determine bearing load.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号