首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-resolution NMR spectroscopy for paramagnetic complexes in solids has been rarely performed because of its limited sensitivity and resolution due to large paramagnetic shifts and associated technical difficulties. The present study demonstrates that magic angle spinning (MAS) at speeds exceeding 20 kHz provides unusually high sensitivity and excellent resolution in 1H solid-state NMR (SSNMR) for paramagnetic systems. Spinning-speed dependence of 1H MAS spectra showed that very fast MAS (VFMAS) at 24-28 kHz enhanced sensitivity by a factor of 12-18, compared with the sensitivity of 1H SSNMR spectra under moderate MAS at 10 kHz, for Cu(dl-alanine)2.H2O and Mn(acac)3, for which the spectral ranges due to 1H paramagnetic shifts reach 200 and 1000 ppm, respectively. It was theoretically and experimentally confirmed that the absolute sensitivity of 1H VFMAS for small paramagnetic complexes such as Cu(dl-alanine)2 can be an order of magnitude higher than that of equimolar diamagnetic ligands because of short 1H T1 ( approximately 1 ms) of the paramagnetic systems and improved sensitivity under VFMAS. On the basis of this demonstrated high sensitivity, 1H SSNMR micro analysis of paramagnetic systems in a nanomole scale is proposed. Applications were performed on two polymorphs of Cu(II)(8-quinolinol)2, which is a suppressor of human cancer cells. It was demonstrated that 1H VFMAS SSNMR spectra accumulated for 20 nmol of the polycrystalline samples in 10 min enabled one to distinguish alpha- and beta-forms of Cu(II)(8-quinolinol)2 on the basis of shift positions and line widths.  相似文献   

2.
Characterizing paramagnetic complexes in solids is an essential step toward understanding their molecular functions. However, methodologies to characterize chemical and electronic structures of paramagnetic systems at the molecular level have been notably limited, particularly for noncrystalline solids. We present an approach to obtain connectivities of chemical groups and metal-binding structures for unlabeled paramagnetic complexes by 13C and 1H high-resolution solid-state NMR (SSNMR) using very fast magic angle spinning (VFMAS, spinning speed >or=20 kHz). It is experimentally shown for unlabeled Cu(II)(Ala-Thr) that 2D 13C/1H correlation SSNMR under VFMAS provides the connectivity of chemical groups and assignments for the characterization of unlabeled paramagnetic systems in solids. We demonstrate that on the basis of the assignments provided by the VFMAS approach multiple 13C-metal distances can be simultaneously elucidated by a combination of measurements of 13C anisotropic hyperfine shifts and 13C T1 relaxation due to hyperfine interactions for this peptide-Cu(II) complex. It is also shown that an analysis of 1H anisotropic hyperfine shifts allows for the determination of electron-spin states in Fe(III)-chloroprotoporphyin-IX in solid states.  相似文献   

3.
The suitability of fast MAS solid-state NMR spectroscopy for probing (1)H chemical shift anisotropy of hydrogen-bonded species has been demonstrated.  相似文献   

4.
A combination of 27Al magic-angle spinning (MAS)/multiple quantum (MQ)-MAS, 13C-1H CPMAS, and 13C-{27Al} transfer of population in double-resonance (TRAPDOR) nuclear magnetic resonance (NMR) were used for the structural elucidation of the aluminum alkoxides aluminum ethoxide, aluminum isopropoxide, and aluminum tertiarybutoxide. Aluminum alkoxides exist as oligomers with aluminum in different coordinations. High-resolution 27Al MAS NMR experiments with high-spinning speed distinguished the aluminum atoms in different environments. The 27Al MAS NMR spectrum gave well-resolved powder patterns with different coordinations. Z-filter MQ-MAS was performed to obtain the number and types of aluminum environments in the oligomeric structure. 13C-1H CPMAS chemical shifts resolved the different carbon species (-CH3, =CH2, =CH-, and =C=) in the structures. 13C-{27Al} TRAPDOR experiments were employed to obtain relative Al-C dipolar interactions and to distinguish between terminal and bridging alkoxides in the crystallographic structures. The complete characterization of selected aluminum alkoxides using advanced NMR methods has evidenced the tetrameric structure for aluminum isopropoxide and the dimeric structure for aluminum tertiary-butoxide, as reported in the literature, and proposed a polymeric structure for aluminum ethoxide.  相似文献   

5.
High-resolution solid-state NMR (SSNMR) of paramagnetic systems has been largely unexplored because of various technical difficulties due to large hyperfine shifts, which have limited the success of previous studies through depressed sensitivity/resolution and lack of suitable assignment methods. Our group recently introduced an approach using "very fast" magic angle spinning (VFMAS) for SSNMR of paramagnetic systems, which opened an avenue toward routine analyses of small paramagnetic systems by (13)C and (1)H SSNMR [Y. Ishii et al., J. Am. Chem. Soc. 125, 3438 (2003); N. P. Wickramasinghe et al., ibid. 127, 5796 (2005)]. In this review, we discuss our recent progress in establishing this approach, which offers solutions to a series of problems associated with large hyperfine shifts. First, we demonstrate that MAS at a spinning speed of 20 kHz or higher greatly improves sensitivity and resolution in both (1)H and (13)C SSNMR for paramagnetic systems such as Cu(II)(DL-alanine)(2)H(2)O (Cu(DL-Ala)(2)) and Mn(acac)(3), for which the spectral dispersions due to (1)H hyperfine shifts reach 200 and 700 ppm, respectively. Then, we introduce polarization transfer methods from (1)H spins to (13)C spins with high-power cross polarization and dipolar insensitive nuclei enhanced by polarization transfer (INEPT) in order to attain further sensitivity enhancement and to correlate (1)H and (13)C spins in two-dimensional (2D) SSNMR for the paramagnetic systems. Comparison of (13)C VFMAS SSNMR spectra with (13)C solution NMR spectra revealed superior sensitivity in SSNMR for Cu(DL-Ala)(2), Cu(Gly)(2), and V(acac)(3). We discuss signal assignment methods using one-dimensional (1D) (13)C SSNMR (13)C-(1)H rotational echo double resonance (REDOR) and dipolar INEPT methods and 2D (13)C(1)H correlation SSNMR under VFMAS, which yield reliable assignments of (1)H and (13)C resonances for Cu(Ala-Thr). Based on the excellent sensitivity/resolution and signal assignments attained in the VFMAS approach, we discuss methods of elucidating multiple distance constraints in unlabeled paramagnetic systems by combing simple measurements of (13)C T(1) values and anisotropic hyperfine shifts. Comparison of experimental (13)C hyperfine shifts and ab initio calculated shifts for alpha- and beta-forms of Cu(8-quinolinol)(2) demonstrates that (13)C hyperfine shifts are parameters exceptionally sensitive to small structural difference between the two polymorphs. Finally, we discuss sensitivity enhancement with paramagnetic ion doping in (13)C SSNMR of nonparamagnetic proteins in microcrystals. Fast recycling with exceptionally short recycle delays matched to short (1)H T(1) of approximately 60 ms in the presence of Cu(II) doping accelerated 1D (13)C SSNMR for ubiquitin and lysozyme by a factor of 7.3-8.4 under fast MAS at a spinning speed of 40 kHz. It is likely that the VFMAS approach and use of paramagnetic interactions are applicable to a variety of paramagnetic systems and nonparamagnetic biomolecules.  相似文献   

6.
The measurement of amide nitrogen 14N quadrupolar coupling by two-dimensional 14N/13C correlation experiment is presented with a natural abundant polypeptide. Directly bonded 14N/13C pairs are correlated through J and residual dipolar coupling under magic-angle spinning using a HMQC-type pulse sequence. The 14N quadrupolar coupling is measured from the isotropic second-order quadrupolar shift obtained by comparing the 14N peak positions with the 15N chemical shifts. The high spectral resolution and sensitivity through 13C detection make this method applicable to many organic, inorganic, and biological molecules for the measurement and the use of 14N quadrupolar coupling as a probe for molecular structure and dynamics.  相似文献   

7.
8.
Heteronuclear dipolar coupling is indispensable in revealing vital information related to the molecular structure and dynamics, as well as intermolecular interactions in various solid materials. Although numerous approaches have been developed to selectively reintroduce heteronuclear dipolar coupling under MAS, most of them lack universality and can only be applied to limited spin systems. Herein, we introduce a new and robust technique dubbed phase modulated rotary resonance (PMRR) for reintroducing heteronuclear dipolar couplings while suppressing all other interactions under a broad range of MAS conditions. The standard PMRR requires the radiofrequency (RF) field strength of only twice the MAS frequency, can efficiently recouple the dipolar couplings with a large scaling factor of 0.50, and is robust to experimental imperfections. Moreover, the adjustable window modification of PMRR, dubbed wPMRR, can improve its performance remarkably, making it well suited for the accurate determination of dipolar couplings in various spin systems. The robust performance of such pulse sequences has been verified theoretically and experimentally via model compounds, at different MAS frequencies. The application of the PMRR technique was demonstrated on the H-ZSM-5 zeolite, where the interaction between the Brønsted acidic hydroxyl groups of H-ZSM-5 and the absorbed trimethylphosphine oxide (TMPO) were probed, revealing the detailed configuration of super acid sites.

A new and robust technique dubbed phase modulated rotary resonance (PMRR) was proposed for the accurate determination of heteronuclear dipolar coupling under a broad range of MAS conditions in solid-state NMR spectroscopy.  相似文献   

9.
10.
The complex hydrogen-bonding arrangement in the biologically important molecule bilirubin IXalpha is probed by using 1H double-quantum (DQ) magic-angle spinning (MAS) NMR spectroscopy. Employing fast MAS (30 kHz) and a high magnetic field (16.4 T), three low-field resonances corresponding to the different hydrogen-bonding protons are resolved in a 1H MAS NMR spectrum of bilirubin. These resonances are assigned on the basis of the proton-proton proximities identified from a two-dimensional rotor-synchronized 1H DQ MAS NMR spectrum. An analysis of 1H DQ MAS spinning-sideband patterns for the NH protons in bilirubin allows the quantitative determination of proton-proton distances and the geometry. The validity of this procedure is proven by simulated spectra for a model three-spin system, which show that the shortest distance can be determined to a very high degree of accuracy. The distance between the lactam and pyrrole NH protons in bilirubin is determined to be 0.186 +/- 0.002 nm (corresponding to a dominant dipolar coupling constant of 18.5 +/- 0.5 kHz). The analysis also yields a distance between the lactam NH and carboxylic acid OH protons of 0.230 +/- 0.008 nm (corresponding to a perturbing dipolar coupling constant of 9.9 +/- 1.0 kHz) and an H-H-H angle of 122 +/- 4 degrees. Finally, a comparison of 1H DQ MAS spinning-sideband patterns for bilirubin and its dimethyl ester reveals a significantly longer distance between the two NH protons in the latter case.  相似文献   

11.
Remarkable progress in solid-state NMR has enabled complete structure determination of uniformly labeled proteins in the size range of 5-10 kDa. Expanding these applications to larger or mass-limited systems requires further improvements in spectral sensitivity, for which inverse detection of 13C and 15N signals with 1H is one promising approach. Proton detection has previously been demonstrated to offer sensitivity benefits in the limit of sparse protonation or with approximately 30 kHz magic-angle spinning (MAS). Here we focus on experimental schemes for proteins with approximately 100% protonation. Full protonation simplifies sample preparation and permits more complete chemical shift information to be obtained from a single sample. We demonstrate experimental schemes using the fully protonated, uniformly 13C,15N-labeled protein GB1 at 40 kHz MAS rate with 1.6-mm rotors. At 500 MHz proton frequency, 1-ppm proton line widths were observed (500 +/- 150 Hz), and the sensitivity was enhanced by 3 and 4 times, respectively, versus direct 13C and 15N detection. The enhanced sensitivity enabled a family of 3D experiments for spectral assignment to be performed in a time-efficient manner with less than a micromole of protein. CANH, CONH, and NCAH 3D spectra provided sufficient resolution and sensitivity to make full backbone and partial side-chain proton assignments. At 750 MHz proton frequency and 40 kHz MAS rate, proton line widths improve further in an absolute sense (360 +/- 115 Hz). Sensitivity and resolution increase in a better than linear manner with increasing magnetic field, resulting in 14 times greater sensitivity for 1H detection relative to that of 15N detection.  相似文献   

12.
Until now, the solid-state photo-CIDNP effect, discovered in 1994 by Zysmilich and McDermott, has been observed selectively in photosynthetic systems. Here we present the first observation of this effect in a nonphotosynthetic system, the blue-light photoreceptor phototropin LOV1-C57S using (13)C magic-angle spinning (MAS) NMR.  相似文献   

13.
We describe three- and four-dimensional semiconstant-time transferred echo double resonance (SCT-TEDOR) magic-angle spinning solid-state nuclear magnetic resonance (NMR) experiments for the simultaneous measurement of multiple long-range (15)N-(13)C(methyl) dipolar couplings in uniformly (13)C, (15)N-enriched peptides and proteins with high resolution and sensitivity. The methods take advantage of (13)C spin topologies characteristic of the side-chain methyl groups in amino acids alanine, isoleucine, leucine, methionine, threonine, and valine to encode up to three distinct frequencies ((15)N-(13)C(methyl) dipolar coupling, (15)N chemical shift, and (13)C(methyl) chemical shift) within a single SCT evolution period of initial duration approximately 1(1)J(CC) (where (1)J(CC) approximately 35 Hz, is the one-bond (13)C(methyl)-(13)C J-coupling) while concurrently suppressing the modulation of NMR coherences due to (13)C-(13)C and (15)N-(13)C J-couplings and transverse relaxation. The SCT-TEDOR schemes offer several important advantages over previous methods of this type. First, significant (approximately twofold to threefold) gains in experimental sensitivity can be realized for weak (15)N-(13)C(methyl) dipolar couplings (corresponding to structurally interesting, approximately 3.5 A or longer, distances) and typical (13)C(methyl) transverse relaxation rates. Second, the entire SCT evolution period can be used for (13)C(methyl) and/or (15)N frequency encoding, leading to increased spectral resolution with minimal additional coherence decay. Third, the experiments are inherently "methyl selective," which results in simplified NMR spectra and obviates the use of frequency-selective pulses or other spectral filtering techniques. Finally, the (15)N-(13)C cross-peak buildup trajectories are purely dipolar in nature (i.e., not influenced by J-couplings or relaxation), which enables the straightforward extraction of (15)N-(13)C(methyl) distances using an analytical model. The SCT-TEDOR experiments are demonstrated on a uniformly (13)C, (15)N-labeled peptide, N-acetyl-valine, and a 56 amino acid protein, B1 immunoglobulin-binding domain of protein G (GB1), where the measured (15)N-(13)C(methyl) dipolar couplings provide site-specific information about side-chain dihedral angles and the packing of protein molecules in the crystal lattice.  相似文献   

14.
A magic-angle spinning (MAS) 2H NMR experiment was applied to study the molecular motion in paramagnetic compounds. The temperature dependences of 2H MAS NMR spectra were measured for paramagnetic [M(H2O)6][SiF6] (M=Ni2+, Mn2+, Co2+) and diamagnetic [Zn(H2O)6][SiF6]. The paramagnetic compounds exhibited an asymmetric line shape in 2H MAS NMR spectra because of the electron-nuclear dipolar coupling. The drastic changes in the shape of spinning sideband patterns and in the line width of spinning sidebands due to the 180 degrees flip of water molecules and the reorientation of [M(H2O)6]2+ about its C3 axis were observed. In the paramagnetic compounds, paramagnetic spin-spin relaxation and anisotropic g-factor result in additional linebroadening of each of the spinning sidebands. The spectral simulation of MAS 2H NMR, including the effects of paramagnetic shift and anisotropic spin-spin relaxation due to electron-nuclear dipolar coupling and anisotropic g-factor, was performed for several molecular motions. Information about molecular motions in the dynamic range of 10(2) s(-1)相似文献   

15.
In this Communication, we introduce a 3D magic-angle spinning recoupling experiment that correlates chemical shift anisotropy (CSA) powder line shapes with two dimensions of site-resolved isotropic chemical shifts. The principal tensor elements from 127 ROCSA line shapes are reported, constraining 102 unique backbone and side-chain 13C sites in a microcrystalline protein (the 56 residue beta1 immunoglobulin binding domain of protein G). The tensor elements, determined by fitting to numerical simulations, agree well with quantum chemical predictions. The experiments, therefore, validate calculations of CSAs in a protein of known structure. The data will be useful for the development of side-chain CSA quantum calculations and will aid in the design and interpretation of solution NMR experiments that utilize CSA-dipole cross-correlation to constrain torsion angles or to enhance resolution and sensitivity (such as in TROSY). Furthermore, the methodology described here will enable databases of CSA data to be generated with higher efficiency, for purposes of direct protein structure refinement.  相似文献   

16.
By introducing dipolar recoupling methods to high-resolution magic-angle spinning (HRMAS) NMR spectroscopy, a class of experiments has been delevoped that allows the measurement of residual dipole-dipole couplings of approximately 1 Hz in weakly immobilized molecules. Using homonuclear 1H-1H recoupling, distances of up to approximately 8 A can be selectively determined, while heteronuclear 1H-13C recoupling provides access to dynamic order parameters of individual molecular segments on the order of approximately 10-3. The experiments are demonstrated on functionalized oligopeptides that are attached to polymer resins.  相似文献   

17.
By means of the (1)H chemical shifts and the proton-proton proximities as identified in (1)H double-quantum (DQ) combined rotation and multiple-pulse spectroscopy (CRAMPS) solid-state NMR correlation spectra, ribbon-like and quartet-like self-assembly can be identified for guanosine derivatives without isotopic labeling for which it was not possible to obtain single crystals suitable for diffraction. Specifically, characteristic spectral fingerprints are observed for dG(C10)(2) and dG(C3)(2) derivatives, for which quartet-like and ribbon-like self-assembly has been unambiguously identified by (15)N refocused INADEQUATE spectra in a previous study of (15)N-labeled derivatives (Pham, T. N.; et al. J. Am. Chem. Soc.2005, 127, 16018). The NH (1)H chemical shift is observed to be higher (13-15 ppm) for ribbon-like self-assembly as compared to 10-11 ppm for a quartet-like arrangement, corresponding to a change from NH···N to NH···O intermolecular hydrogen bonding. The order of the two NH(2)(1)H chemical shifts is also inverted, with the NH(2) proton closest in space to the NH proton having a higher or lower (1)H chemical shift than that of the other NH(2) proton for ribbon-like as opposed to quartet-like self-assembly. For the dG(C3)(2) derivative for which a single-crystal diffraction structure is available, the distinct resonances and DQ peaks are assigned by means of gauge-including projector-augmented wave (GIPAW) chemical shift calculations. In addition, (14)N-(1)H correlation spectra obtained at 850 MHz under fast (60 kHz) magic-angle spinning (MAS) confirm the assignment of the NH and NH(2) chemical shifts for the dG(C3)(2) derivative and allow longer range through-space N···H proximities to be identified, notably to the N7 nitrogens on the opposite hydrogen-bonding face.  相似文献   

18.
High-resolution solid-state 13C NMR is a versatile, non-destructive technique that is useful for the characterization of intractable solids. The NMR experiment provides a unique combination of structural and dynamic information that can be related to the chemical and physical properties of solid materials.  相似文献   

19.
We present a robust solid-state NMR approach for the accurate determination of molecular interfaces in insoluble and noncrystalline protein-protein complexes. The method relies on the measurement of intermolecular (13)C-(13)C distances in mixtures of [1-(13)C]glucose- and [2-(13)C]glucose-labeled proteins. We have applied this method to Parkinson's disease-associated α-synuclein fibrils and found that they are stacked in a parallel in-register arrangement. Additionally, intermolecular distance restraints for the structure determination of the fibrils at atomic resolution were measured.  相似文献   

20.
The crystalline structures of ethylene-dimethylaminoethyl methacrylate (EDAM) copolymers, which were either melt-quenched (mq) or isothermally crystallized (iso), were studied by solid-state high-resolution 13C NMR spectroscopy. It revealed that the crystalline structures of EDAM copolymers are greatly dependent on the comonomer content, crystallization condition and the storage time after treatment. The ratio of monoclinic to orthorhombic crystal (M/O) increases with the increase in the dimethylaminoethyl methacrylate content. Higher crystallinity and lower monoclinic content were observed for iso samples compared to the mq ones. The monoclinic crystal was found to melt at lower temperatures compared to the orthorhombic one during the heating process. The degree of crystallinity as well as the contents of monoclinic and orthorhombic crystals and the M/O value are found to increase after storage at room temperature for a month.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号