首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
In this paper, a boundary perturbation interior point homotopy method is proposed to give a constructive proof of the general Brouwer fixed point theorem and thus solve fixed point problems in a class of nonconvex sets. Compared with the previous results, by using the newly proposed method, initial points can be chosen in the whole space of Rn, which may improve greatly the computational efficiency of reduced predictor-corrector algorithms resulted from that method. Some numerical examples are given to illustrate the results of this paper.  相似文献   

2.
An implementation of the primal-dual predictor-corrector interior point method is specialized to solve block-structured linear programs with side constraints. The block structure of the constraint matrix is exploited via parallel computation. The side constraints require the Cholesky factorization of a dense matrix, where a method that exploits parallelism for the dense Cholesky factorization is used. For testing, multicommodity flow problems were used. The resulting implementation is 65%–90% efficient, depending on the problem instance. For a problem with K commodities, an approximate speedup for the interior point method of 0.8K is realized.  相似文献   

3.
In this paper, an interior point cutting plane method (IPCPM)is applied to solve optimal power flow (OPF) problems. Comparedwith the simplex cutting plane method (SCPM), the IPCPM is simpler,and efficient because of its polynomial-time characteristic.Issues in implementing IPCPM for OPF problems are addressed,including (1) how to generate cutting planes without using thesimplex tableau, (2) how to identify the basis variables inIPCPM, and (3) how to generate mixed integer cutting planes.The calculation speed of the proposed algorithm is further enhancedby utilizing the sparsity features of the OPF formulation. Numericalsimulations on IEEE 14-300-bus test systems have shown thatthe proposed method is effective.  相似文献   

4.
The linear semidefinite programming problem is examined. A primal interior point method is proposed to solve this problem. It extends the barrier-projection method used for linear programs. The basic properties of the proposed method are discussed, and its local convergence is proved.  相似文献   

5.
6.
We will present a potential reduction method for linear programming where only the constraints with relatively small dual slacks—termed active constraints—will be taken into account to form the ellipsoid constraint at each iteration of the process. The algorithm converges to the optimal feasible solution in O( L) iterations with the same polynomial bound as in the full constraints case, wheren is the number of variables andL is the data length. If a small portion of the constraints is active near the optimal solution, the computational cost to find the next direction of movement in one iteration may be considerably reduced by the proposed strategy.This research was partially done in June 1990 while the author was visiting the Department of Mathematics, University of Pisa.  相似文献   

7.
The objective of this paper is to construct and analyze a fitted operator finite difference method (FOFDM) for the family of time‐dependent singularly perturbed parabolic convection–diffusion problems. The solution to the problems we consider exhibits an interior layer due to the presence of a turning point. We first establish sharp bounds on the solution and its derivatives. Then, we discretize the time variable using the classical Euler method. This results in a system of singularly perturbed interior layer two‐point boundary value problems. We propose a FOFDM to solve the system above. Through a rigorous error analysis, we show that the scheme is uniformly convergent of order one with respect to both time and space variables. Moreover, we apply Richardson extrapolation to enhance the accuracy and the order of convergence of the proposed scheme. Numerical investigations are carried out to demonstrate the efficacy and robustness of the scheme.  相似文献   

8.
In this paper, we present an interior point algorithm for solving both convex and nonconvex quadratic programs. The method, which is an extension of our interior point work on linear programming problems efficiently solves a wide class of largescale problems and forms the basis for a sequential quadratic programming (SQP) solver for general large scale nonlinear programs. The key to the algorithm is a three-dimensional cost improvement subproblem, which is solved at every interation. We have developed an approximate recentering procedure and a novel, adaptive big-M Phase I procedure that are essential to the sucess of the algorithm. We describe the basic method along with the recentering and big-M Phase I procedures. Details of the implementation and computational results are also presented.Contribution of the National Institute of Standards and Tedchnology and not subject to copyright in the United States. This research was supported in part by ONR Contract N-0014-87-F0053.  相似文献   

9.
We present an interior point approach to the zero–one integer programming feasibility problem based on the minimization of a nonconvex potential function. Given a polytope defined by a set of linear inequalities, this procedure generates a sequence of strict interior points of this polytope, such that each consecutive point reduces the value of the potential function. An integer solution (not necessarily feasible) is generated at each iteration by a rounding scheme. The direction used to determine the new iterate is computed by solving a nonconvex quadratic program on an ellipsoid. We illustrate the approach by considering a class of difficult set covering problems that arise from computing the 1-width of the incidence matrix of Steiner triple systems.  相似文献   

10.
《Optimization》2012,61(3):345-377
We consider the extension of primal dual interior point methods for linear programming on symmetric cones, to a wider class of problems that includes approximate necessary optimality conditions for functions expressible as the difference of two convex functions of a special form. Our analysis applies the Jordan-algebraic approach to symmetric cones. As the basic method is local, we apply the idea of the filter method for a globalization strategy.  相似文献   

11.
 We present combinatorial interior point methods for the generalized minimum cost flow and the generalized circulation problems based on Wallacher and Zimmermann's combinatorial interior point method for the minimum cost network flow problem. The algorithms have features of both a combinatorial algorithm and an interior point method. They work towards optimality by iteratively reducing the value of a potential function while maintaining interior point solutions. At each iteration, flow is augmented along a generalized circulation, which is computed by solving a TVPI (Two Variables Per Inequality) system. The algorithms run in time, where m and n are, respectively, the number of arcs and nodes in the graph, and L is the length of the input data. Received: June 1, 2001 / Accepted: May 23, 2002-08-22 Published online: September 27, 2002 RID="*" ID="*" This research was supported in part by NSF Grants DMS 94-14438, DMS 95-27124, CDA 97-26385 and DMS 01-04282, and DOE Grant DE-FG02-92ER25126 Mathematics Subject Classification (2000): 20E28, 20G40, 20C20  相似文献   

12.
In this paper, we consider the solution of linear systems of saddle point type by a preconditioned numerical method. We first transform the original linear system into two sub-systems with small size by a preconditioning strategy, then employ the conjugate gradient (CG) method to solve the linear system with a SPD coefficient matrix, and a splitting iteration method to solve the other sub-system, respectively. Numerical experiments show that the new method can achieve faster convergence than several effective preconditioners published in the recent literature in terms of total runtime and iteration steps.  相似文献   

13.
In this paper, we propose a new trust-region-projected Hessian algorithm with nonmonotonic backtracking interior point technique for linear constrained optimization. By performing the QR decomposition of an affine scaling equality constraint matrix, the conducted subproblem in the algorithm is changed into the general trust-region subproblem defined by minimizing a quadratic function subject only to an ellipsoidal constraint. By using both the trust-region strategy and the line-search technique, each iteration switches to a backtracking interior point step generated by the trustregion subproblem. The global convergence and fast local convergence rates for the proposed algorithm are established under some reasonable assumptions. A nonmonotonic criterion is used to speed up the convergence in some ill-conditioned cases. Selected from Journal of Shanghai Normal University (Natural Science), 2003, 32(4): 7–13  相似文献   

14.
This paper presents a homotopy interior point method for solving a semi-infinite programming (SIP) problem. For algorithmic purpose, based on bilevel strategy, first we illustrate appropriate necessary conditions for a solution in the framework of standard nonlinear programming (NLP), which can be solved by homotopy method. Under suitable assumptions, we can prove that the method determines a smooth interior path from a given interior point to a point w *, at which the necessary conditions are satisfied. Numerical tracing this path gives a globally convergent algorithm for the SIP. Lastly, several preliminary computational results illustrating the method are given.  相似文献   

15.
We propose an interior point method for large-scale convex quadratic programming where no assumptions are made about the sparsity structure of the quadratic coefficient matrixQ. The interior point method we describe is a doubly iterative algorithm that invokes aconjugate projected gradient procedure to obtain the search direction. The effect is thatQ appears in a conjugate direction routine rather than in a matrix factorization. By doing this, the matrices to be factored have the same nonzero structure as those in linear programming. Further, one variant of this method istheoretically convergent with onlyone matrix factorization throughout the procedure.  相似文献   

16.
For large sparse systems of linear equations iterative techniques are attractive. In this paper, we study a splitting method for an important class of symmetric and indefinite system. Theoretical analyses show that this method converges to the unique solution of the system of linear equations for all t>0 (t is the parameter). Moreover, all the eigenvalues of the iteration matrix are real and nonnegative and the spectral radius of the iteration matrix is decreasing with respect to the parameter t. Besides, a preconditioning strategy based on the splitting of the symmetric and indefinite coefficient matrices is proposed. The eigensolution of the preconditioned matrix is described and an upper bound of the degree of the minimal polynomials for the preconditioned matrix is obtained. Numerical experiments of a model Stokes problem and a least‐squares problem with linear constraints presented to illustrate the effectiveness of the method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
1.IntroductionSemidefiniteprogrammingunifiesquiteanumberofstandardmathematicalprogrammingproblems,suchaslinearprogrammingproblems,quadraticminimizationproblemswithconvexquadraticconstraints.Italsofindsmanyapplicationsinengineering,control,andcombinatorialoptimization[l,2].Inthepastfewyears,aquitenumberofresearchworkbasedoninteriorpointmethodsgaveattentiontoparametricsemidefiniteprogrammingproblems[3,4]fwherediscussionsaremostlyrelatedtopostoptimalandparametricanalysis.Inthispapergwefocusoureff…  相似文献   

18.
广义Nash均衡问题(GNEP),是非合作博弈论中一类重要的问题,它在经济学、管理科学和交通规划等领域有着广泛的应用.本文主要提出一种新的惩罚算法来求解一般的广义Nash均衡问题,并根据罚函数的特殊结构,采用交替方向法求解子问题.在一定的条件下,本文证明新算法的全局收敛性.多个数值例子的试验结果表明算法是可行的,并且是有效的.  相似文献   

19.
Stochastic programming is recognized as a powerful tool to help decision making under uncertainty in financial planning. The deterministic equivalent formulations of these stochastic programs have huge dimensions even for moderate numbers of assets, time stages and scenarios per time stage. So far models treated by mathematical programming approaches have been limited to simple linear or quadratic models due to the inability of currently available solvers to solve NLP problems of typical sizes. However stochastic programming problems are highly structured. The key to the efficient solution of such problems is therefore the ability to exploit their structure. Interior point methods are well-suited to the solution of very large non-linear optimization problems. In this paper we exploit this feature and show how portfolio optimization problems with sizes measured in millions of constraints and decision variables, featuring constraints on semi-variance, skewness or non-linear utility functions in the objective, can be solved with the state-of-the-art solver.  相似文献   

20.
In this paper, we are interested in the performance of Karmarkar’s projective algorithm for linear programming. We propose a new displacement step to accelerate and improve the convergence of this algorithm. This purpose is confirmed by numerical experimentations showing the efficiency and the robustness of the obtained algorithm over Schrijver’s one for small problem dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号