首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We report the synthesis and characterization of perchlorate salts containing the following three novel complex cations each with a bidentate thioether ligand: binuclear cis-[Pt(CH3SCH2CH2CH2SCH3)(mu-OH)]22+, mononuclear cis-[Pt(CH3SCH2CH2CH2SCH3)(H2O)2]2+, and mononuclear cis-[Pd(CH3SCH2CH2CH2SCH3)(H2O)2]2+. Despite their analogous compositions, the mononuclear Pt(II) and Pd(II) complexes differ in the selectivity with which they promote the hydrolysis of polypeptides. The complex cis-[Pt(CH3SCH2CH2CH2SCH3)(H2O)2]2+ promotes slow but selective cleavage of Met-Pro peptide bonds at pH 2.0. The selectivity of the complex cis-[Pd(CH3SCH2CH2CH2SCH3)(H2O)2]2+ is pH-dependent. At pH 2.0, this Pd(II) complex promotes residue-selective hydrolysis of the X-Y bond in X-Y-Met and X-Y-His sequences; the rate is enhanced when residue Y is proline. At pH 7.0, this kinetic preference becomes sequence-selective in that the Pd(II) complex exclusively cleaves the X-Pro bond in X-Pro-Met and X-Pro-His sequences. The enhanced reactivity of the X-Pro amide group is attributed to the high basicity of its carbonyl oxygen atom. Binding of the metal(II) atom enhances the electrophilicity of the carbonyl carbon atom and promotes nucleophilic attack by a solvent water molecule. The bidentate thioether ligand disfavors the formation of hydrolytically unreactive complexes, allowing the Pd(II) complex to promote the cleavage reaction.  相似文献   

2.
The reaction of cis-[Pt(NH3)2(3-pyhaH)2]2+ (3-pyhaH = 3-pyridinehydroxamic acid) and cis-[Pt(NH3)2(4-pyhaH)2]2+ (4-pyhaH = 4-pyridinehydroxamic acid) with Cu(II), Ni(II) or Zn(II) in aqueous solution affords novel heterobimetallic pyridinehydroxamate-bridged complexes, {cis-[Pt(NH3)2(mu-3-pyha)M(mu-3-pyha)].SO4.xH2O}n and {cis-[Pt(NH3)2(mu-4-pyha)M(mu-4-pyha)].SO4.xH2O}n respectively. The crystal and molecular structure of one of these, {cis-[Pt(NH3)2(mu-3-pyha)Cu(mu-3-pyha)]SO4.8H2O}n 3a, has been determined and was found to be a novel heterobimetallic wave-like coordination polymer, the structure of which contains interlinked pyridinehydroxamate-bridged repeating units of Pt(II) and Cu(II) ions in slightly distorted square-planar N4 and O4 coordination environments respectively and extensive hydrogen-bonding through the Pt ammines and the deprotonated hydroxamate O and via the O of the SO4(2-) counterions and the H(N) of the hydroxamate moiety. Spectrophotometric and speciation studies on the other heterobimetallic systems confirm that very similar species are being formed in solution and based on elemental analysis and spectroscopic results analogous complexes are formed in the solid-state. In this paper, we report the first examples of coordination polymers incorporating both Pt(II)/Cu(II), Pt(II)/Ni(II) and Pt(II)/Zn(II) and containing pyridinehydroxamic acids as bridging scaffolds.  相似文献   

3.
Palladium and platinum complexes with HmtpO (where HmtpO=4,7-dihydro-5-methyl-7-oxo[1,2,4]triazolo[1,5-a]pyrimidine, an analogue of the natural occurring nucleobase hypoxanthine) of the types [M(dmba)(PPh3)(HmtpO)]ClO4[dmba=N,C-chelating 2-(dimethylaminomethyl)phenyl; M=Pd or Pt], [Pd(N-N)(C6F5)(HmtpO)]ClO4[N-N=2,2'-bipyridine (bpy), 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), or N, N, N', N'-tetramethylethylenediamine (tmeda)] and cis-[M(C6F5)2(HmtpO)2] (M=Pd or Pt) (head-to-head atropisomer in the solid state) have been obtained. Pd(II) and Pt(II) complexes with the anion of HmtpO of the types [Pd(tmeda)(C6F5)(mtpO)], [Pd(dmba)(micro-mtpO)] 2, and [NBu4]2[M(C6F5)2(micro-mtpO)]2(M=Pd or Pt) have been prepared starting from the corresponding hydroxometal complexes. Complexes containing simultaneously both the neutral HmtpO ligand and the anionic mtpO of the type [NBu4][M(C6F5)2(HmtpO)(mtpO)] (M=Pd or Pt) have been also obtained. In these mtpO-HmtpO metal complexes, for the first time, prototropic exchange is observed between the two heterocyclic ligands. The crystal structures of [Pd(dmba)(PPh 3)(HmtpO)]+, cis-[Pt(C6F5)2(HmtpO)2].acetone, [Pd(C6F5)(tmeda)(mtpO)].2H2O, [Pd(dmba)(micro-mtpO)]2, [NBu4]2[Pd(C6F5)2(micro-mtpO)]2.CH2Cl2.toluene, [NBu4]2[Pt(C6F5)2(micro-mtpO)](2).0.5(toluene), and [NBu4][Pt(C6F5)2(mtpO)(HmtpO)] have been established by X-ray diffraction. Values of IC50 were calculated for the new platinum complexes cis-[Pt(C6F5)2(HmtpO)2] and [Pt(dmba)(PPh3)(HmtpO)]ClO4 against a panel of human tumor cell lines representative of ovarian (A2780 and A2780 cisR), lung (NCI-H460), and breast cancers (T47D). At 48 h incubation time, both complexes were about 8-fold more active than cisplatin in T47D and show very low resistance factors against an A2780 cell line, which has acquired resistance to cisplatin. The DNA adduct formation of cis-[Pt(C6F5)2(HmtpO)2] and [Pt(dmba)(PPh3)(HmtpO)]ClO4 was followed by circular dichroism and electrophoretic mobility. Atomic force microscopy images of the modifications caused by these platinum complexes on plasmid DNA pB R322 were also obtained.  相似文献   

4.
The reaction of two equivalents of the functional phosphine ligand N-(diphenylphosphino)-1,3,4-thiadiazol-2-amine Ph2PNHC=NNCHS (2) with [PdCl2(NCPh)2] in the presence of NEt3 gives the neutral, P,N-chelated complex cis-[Pd(Ph2PN=CNN=CHS)2] ([Pd(2-H)2], 3b), which is analogous to the Pt(II) analogue cis-[Pt (Ph2PN=CNN=CHS)2] ([Pt(2-H)2], 3a) reported previously. These complexes function as chelating metalloligands when further coordinated to a metal through each of the CH-N atoms. In the resulting complexes, each endo-cyclic N donor of the thiadiazole rings is bonded to a different metal centre. Thus, the heterodinuclear palladium/platinum complexes cis-[Pt(Ph2PN=CNN=CHS)2PdCl2]([Pt(2-H)2·PdCl2], 4a) and cis-[Pd(Ph2PN=CNN=CHS)2PtCl2]([Pd(2-H)2·PtCl2], 4b) were obtained by reaction with [PdCl2(NCPh)2] and [PtCl2(NCPh)2], respectively. In contrast, reaction of 3a with [AuCl(tht)] occurred instead at the P-bound N atom, and afforded the platinum/digold complex cis-[Pt{Ph2PN(AuCl)=CNN=CHS}2] ([Pt(2-H)2(AuCl)2], 5). For comparison, reaction of 4a with HBF4 yielded cis-[Pt(Ph2PNH=CNN=CHS)2PdCl2](BF4)2([H24a](BF4)2, 6), in which the chelated PdCl2 moiety is retained. Complexes 3b, 4a·CH2Cl2, 4b·0.5C7H8, 5·4CHCl3 and 6 have been structurally characterized by X-ray diffraction.  相似文献   

5.
The treatment of cis-[Pt(II)(L(1a/b)-S,O)2] complexes of N,N-diethyl- (HL(1a)) and N,N-di(n-butyl)-N'-benzoylthiourea (HL(1b)) with I2 or Br2 in chloroform, leads to rapid oxidative addition to yield several geometric isomers of [Pt(IV)(L-S,O)(2)X(2)](X = I, Br); the reactions can be monitored by (195)Pt NMR and UV-visible spectrophotometry. The products cis-[Pt(IV)(L(1a)-S,O)2I2] and cis-[Pt(IV)(L(1a)-S,O)2Br2], which have been isolated and structurally characterized, are the first-reported crystal structures of complexes of Pt(iv) with this class of ligand. Molecules of 6 pack such that the I-Pt-I axes are essentially aligned, with unusually close nearest-neighbour iodide contacts (3.553(1)A). These short II intermolecular interactions lead to infinite chains of weakly connected molecules in crystals of the compound. No such interactions are evident in the corresponding crystals of . Reaction of the Pt(II) complex of N-propyl-N'-benzoylthiourea (H2L(2a))cis-/trans-[Pt(II)(H2L(2a)-S)2Br2] with Br2 also results in oxidative addition, to yield trans-Pt(IV)(H2L(2a)-S)2Br4. By contrast, treatment of cis-/trans-[Pt(II)(H2L(2a)-S)2I2] with I2 does not lead to an oxidative addition product, yielding instead an interesting iodine inclusion compound of Pt(II), trans-[Pt(II)(H2L(2a)-S)2I2.I2. In 8, short intermolecular II distances of 3.453(1)A between I2 and coordinated iodide ions in trans-[Pt(II)(H(2)L(2a)-S)(2)I(2)] molecules, result in infinite chains of weakly linked trans-[Pt(II)(H2L(2a)-S)2I2]...I2 groups in the lattice. However, the empirically estimated bond order of 0.75 for the included I2 molecules does not support the possible existence of discrete tetraiodide ions (I4(2-)) in the lattice of compound 8.  相似文献   

6.
Sun X  Jin C  Mei Y  Yang G  Guo Z  Zhu L 《Inorganic chemistry》2004,43(1):290-296
Interactions of cis-[Pd(en)(H(2)O)(2)](2+) (en, ethylenediamine) and cis-[Pt(NH(3))(2)(H(2)O)(2)](2+) with microperoxidase-11 (MP-11) in a molar ratio of 1:1 or 2:1 at pH 1.4 were investigated via electrospray mass spectrometry and MS/MS analysis at room temperature and at 40 degrees C with an incubation time of 2 or 3 days. The composition of the Pd(II)- and Pt(II)-anchored MP-11 was confirmed on the basis of the precise molecular mass and the simulated isotope distribution pattern. MS/MS analysis revealed that the Pd(II) center anchored to the side chain of Cys7 as Pd(II) and MP-11 were mixed in an equimolar ratio and to side chains of Cys7 and Cys4 as Pd(II) and MP-11 mixed in a 2:1 molar ratio. When Pt(II) and MP-11 were mixed in a 2:1 molar ratio, Pt(II) first anchored to the side chain of Cys7, and then to the side chain of Cys4 with time. The initial coordination of Pd(II) and Pt(II) to the side chain of Cys7 is the essential step for the Pd(II)- and Pt(II)-promoted cleavage of the His8-Thr9 bond in MP-11. These results support the hypothesis that the Pd(II)-mediated cleavage of the His18-Thr19 bond in cytochorome c is due to the identical binding mode.  相似文献   

7.
Binding of tryptophan residue to intrinsic metal ions in proteins is unknown, and very little is known about the coordinating abilities of indole. Indole-3-acetamide displaces the solvent ligands from cis-[Pt(en)(sol)2]2+, in which sol is acetone or H2O, in acetone solution and forms the complex cis-[Pt(en)(indole-3-acetamide)]2+ (3) of spiro structure, in which the new bidentate ligand coordinates to the Pt(II) atom via the C(3) atom of the indolyl group and the amide oxygen atom. This structure is supported by 1H, 13C, 15N, and 195Pt NMR spectra and by UV, IR, and mass spectra. Molecular mechanical simulations by Hyperchem and CHARMM methods give consistent structural models; the latter is optimized by density-functional quantum chemical calculations. Dipeptide-like molecules N-(3-indolylacetyl)-L-amino acid in which amino acid is alanine, leucine, isoleucine, valine, aspartic acid, or phenylalanine also displace the solvent ligands in acetone solution and form complexes cis-[Pt(en) N-(3-indolylacetyl)-L-amino acid)]2+ (6), which structurally resemble 3 but exist as two diastereomers, detected by 1H NMR spectroscopy. The bulkier the amino acid moiety, the slower the coordination of these dipeptide-like ligands to the Pt(II) atom. The indolyl group does not coordinate as a unidentate ligand; a second donor atom is necessary for bidentate coordination of this atom and the indolyl C(3) atom. The solvent-displacement reaction is of first and zeroth orders with respect to indole-3-acetamide and cis-[Pt(en)(sol)2]2+, respectively. A mechanism consisting of initial unidentate coordination of the ligand via the amide oxygen atom followed by closing of the spiro ring is supported by 1H NMR data, the kinetic effects of acid and water, and the activation parameters for the displacement reaction. In the case of N-(3-indolylacetyl)-L-phenylalanine, the bulkiest of the entering ligands, the reaction is of first order with respect to both reactants. The bidentate indole-3-acetamide ligand in 3 is readily displaced by (CH3)2SO and 2-methylimidazole, but not by CNO-, CH3COO-, and CH3CN. Complexes cis-[Pd(en)(sol)2]2+ and cis-[Pd(dtco)(sol)2]2+ react with indole-3-acetamide more rapidly than their Pt(II) analogues do and yield complexes similar to 3. This study augments our recent discovery of selective, hydrolytic cleavage of tryptophan-containing peptides by Pd(II) and Pt(II) complexes.  相似文献   

8.
Palladium and platinum complexes with the model nucleobase 1-methylcytosine (1-Mecyt) of the types [Pd(N-N)(C6F5)(1-Mecyt)]ClO4 [N-N = bis(3,5-dimethylpyrazol-1-yl)methane (bpzm), bis(pyrazol-1-yl)methane (bpzm), N,N,N',N'-tetramethylethylenediamine (tmeda), or 2,2'-bipyridine (bpy)] and [M(dmba)(L')(1-Mecyt)]ClO4 [dmba = N,C-chelating 2-(dimethylaminomethyl)phenyl; L' = PPh(3) (M = Pd or Pt), DMSO (M = Pt)] have been obtained. Palladium and platinum complexes of the types cis-[M(C6F5)2(1-Mecyt)2] (M = Pd or Pt) and cis-[Pd(L')(C6F5)(1-Mecyt)2]ClO4 (L' = PPh(3) or t-BuNC) have also been prepared. The crystal structures of [Pd(bpzm)(C6F5)(1-Mecyt)]ClO4, [Pt(dmba)(DMSO)(1-Mecyt)]ClO4, cis-[Pd(C6F5)2(1-Mecyt)2], and cis-[Pd(t-BuNC)(C6F5)(1-Mecyt)2]ClO4 have been established by X-ray diffraction. There is extensive hydrogen bonding (N-H...O, C-H...F or C-H...O) in all the compounds. There are also intermolecular pi-pi interactions between pyrimidine rings of adjacent chains in [Pd(C6F5)2(1-Mecyt)2]. DNA adduct formation of the new complexes synthesized was followed by circular dichroism and electrophoretic mobility. Atomic force microscopy images of the modifications caused by the complexes on plasmid DNA pBR322 were also obtained. Values of IC(50) were also calculated for the new complexes against the tumor cell line HL-60. At a short incubation time (24 h) almost all new complexes were more active than cisplatin.  相似文献   

9.
Complexes of salicylhydroxamic acid (shaH) with palladium(II) and platinum(II) were investigated. The synthesis of [Pt(sha)(2)] was attempted via a number of methods, and ultimately (1)H NMR investigations revealed that salicylhydroxamate would not coordinate to chloro complexes of platinum(II). However, [Pt(sha-H)(PPh(3))(2)] was successfully synthesized and the crystal structure determined (orthorhombic, space group Pca2(1) a = 17.9325(19) A, b = 11.3102(12) A, c = 18.2829(19) A, Z = 4, R = 0.0224). The sha binds via an [O,O] binding mode, in its hydroximate form. In contrast the palladium complex [Pd(sha)(2)] was readily synthesized and crystallized as [Pd(sha)(2)](DMF)(4) in the triclinic space group P(-)1,a = 7.066(1) A, b = 9.842(2) A, c = 12.385(2) A, alpha = 99.213(3)(o), beta = 90.669(3), gamma = 109.767(3)(o), Z = 1, R = 0.037. The unexpected [N,O'] binding mode of the salicylhydroxamate ligand in [Pd(sha)(2)] prompted investigation of the stability of a number of binding modes of salicylhydroxamic acid in [M(sha)(2)] (M = Pd, Pt) by density functional theory, using the B3LYP hybrid functional at the 6-311G* level of theory. Geometry optimizations were carried out for various binding modes of the ligands and their relative energies established. It was found that the [N,O'] mode gave the more stable complex, in accord with experimental observations. Stabilization of hydroxamate binding to platinum is evidently afforded by soft ligands lying trans to them.  相似文献   

10.
We report the synthesis and full characterization for a series of cyclometallated complexes of Pt(II) and Pd(II) incorporating the fluxional trithiacrown ligand 1,4,7-trithiacyclononane ([9]aneS3). Reaction of [M(C insertion mark N)(micro-Cl)]2 (M = Pt(II), Pd(II); C insertion mark N = 2-phenylpyridinate (ppy) or 7,8-benzoquinolinate (bzq)) with [9]aneS3 followed by metathesis with NH4PF6 yields [M(C insertion mark N)([9]aneS3)](PF6). The complexes [M(C insertion mark P)([9]aneS3)](PF6) (M = Pt(II), Pd(II); Cinsertion markP = [CH2C6H4P(o-tolyl)2-C,P]-) were synthesized from their respective [Pt(C insertion mark P)(micro-Cl)]2 or [Pd(C insertion mark P)(micro-O2CCH3)]2 (C insertion mark P) starting materials. All five new complexes have been fully characterized by multinuclear NMR, IR and UV-Vis spectroscopies in addition to elemental analysis, cyclic voltammetry, and single-crystal structural determinations. As expected, the coordinated [9]aneS3 ligand shows fluxional behavior in its NMR spectra, resulting in a single 13C NMR resonance despite the asymmetric coordination environment of the cyclometallating ligand. Electrochemical studies reveal irreversible one-electron metal-centered oxidations for all Pt(II) complexes, but unusual two-electron reversible oxidations for the Pd(II) complexes of ppy and bzq. The X-ray crystal structures of each complex indicate an axial M-S interaction formed by the endodentate conformation of the [9]aneS3 ligand. The structure of [Pd(bzq)([9]aneS3)](PF6) exhibits disorder in the [9]aneS3 conformation indicating a rare exodentate conformation as the major contributor in the solid-state structure. DFT calculations on [Pt([9]aneS3)(ppy)](PF6) and [Pd([9]aneS3)(ppy)](PF6) indicate the HOMO for both complexes is primarily dz2 in character with a significant contribution from the phenyl ring of the ppy ligand and p orbital of the axial sulfur donor. In contrast, the calculated LUMO is primarily ppy pi* in character for [Pt([9]aneS3)(ppy)](PF6), but dx2-y2 in character for [Pd([9]aneS3)(ppy)](PF6).  相似文献   

11.
1H,13C, and195Pt NMR studies were performed for Pt(ll) and Pd(II) complexes with glycine cis- and trans-M(Gly)2, trans-Pd(GlyH)2Cl2 , cis- and trans-Pt(GlyH)2Cl2 , Na[Pd(GIy)Cl2], and K[Pt(Gly)CI2] in donor type solvents DMSO and H2O. It is shown that a cis ↔ trans equilibrium takes place in these solvents and that the equilibration rate is low for Pt(II) complexes and high for Pd(II) complexes. Therefore, the cis- and trans-complexes of Pt(II) may be recorded by NMR spectroscopy in the individual state, whereas for Pd(II) there is an equilibrium mixture of cis- and trans-isomers. Solvolysis of Cl-containing complexes in DMSO is studied. A mechanism of solvolysis involving eis ↔ trans isomerization of the dichloro complexes of Pd(II) is suggested. NMR spectral data for some solvolysis products are given. Translated fromZhurnal Strukturnoi Khimii, Vol. 41, No. 2, pp. 300–311, March–April, 2000.  相似文献   

12.
The Hg2+aq- and HgCl+aq-assisted aquations of [PtCl4]2- (1), [PtCl3(H2O)]- (2), cis-[PtCl2(H2O)2] (3), trans-[PtCl2(H2O)2] (4), [PtCl(H2O)3]+ (5), [PtCl3Me2SO]- (6), trans-[PtCl2(H2O)Me2SO] (7), cis-[PtCl(H2O)2Me2SO]+ (8), trans-[PtCl(H2O)2M32SO]+ (9), trans-[PtCl2(NH3)2] (10), and cis-[PtCl2(NH3)2] (11) have been studied at 25.0 degrees C in a 1.00 M HClO4 medium buffered with chloride, using stopped-flow and conventional spectrophotometry. Saturation kinetics and instantaneous, large UV/vis spectral changes on mixing solutions of platinum complex and mercury are ascribed to formation of transient adducts between Hg2+ and several of the platinum complexes. Depending on the limiting rate constants, these adducts are observed for a few milliseconds to a few minutes. Thermodynamic and kinetics data together with the UV/vis spectral changes and DFT calculations indicate that their structures are characterized by axial coordination of Hg to Pt with remarkably short metal-metal bonds. Stability constants for the Hg2+ adducts with complexes 1-6, 10, and 11 are (2.1 +/- 0.4) x 10(4), (8 +/- 1) x 10(2), 94 +/- 6, 13 +/- 2, 5 +/- 2, 60 +/- 6, 387 +/- 2, and 190 +/- 3 M-1, respectively, whereas adduct formation with the sulfoxide complexes 7-9 is too weak to be observed. For analogous platinum(II) complexes, the stabilities of the Pt-Hg adducts increase in the order sulfoxide < aqua < ammine complex, reflecting a sensitivity to the pi-acid strength of the Pt ligands. Rate constants for chloride transfer from HgCl+ and HgCl2 to complexes 1-11 have been determined. Second-order rate constants for activation by Hg2+ are practically the same as those for activation by HgCl+ for each of the platinum complexes studied, yet resolved contributions for Hg2+ and HgCl+ reveal that the latter does not form dinuclear adducts of any significant stability. The overall experimental evidence is consistent with a mechanism in which the accumulated Pt(II)-Hg2+ adducts are not reactive intermediates along the reaction coordinate. The aquation process occurs via weaker Pt-Cl-Hg or Pt-Cl-HgCl bridged complexes.  相似文献   

13.
The ligand 2-mercapto-3,5-di-tert-butylaniline, H[L(AP)], an o-aminothiophenol, reacts with metal(II) salts of Ni and Pd in CH3CN or C2H5OH in the presence of NEt3 under strictly anaerobic conditions with formation of beige to yellow cis-[M(II)(L(AP))2] (M = Ni (1), Pd (2)) where (L(AP))1- represents the o-aminothiophenolate(1-) form. The crystal structure of cis-[Pd(II)(L(AP))2][HN(C2H5)3][CH3CO2] has been determined by X-ray crystallography. In the presence of air the same reaction produces dark blue solutions from which mixtures of the neutral complexes trans/cis-[M(II)(L(ISQ))2] (M = Ni (1a/1b), Pd (2a/2b), and Pt (3a/3b)) have been isolated as dark blue-black solid materials. By using HPLC the mixture of 3a/3b has been separated into pure samples of 3a and 3b, respectively; (L(ISQ))1- represents the o-iminothionebenzosemiquinonate(1-) pi-radical. The structures of 1a.dmf and 3a.CH2Cl2 have also been determined. All compounds are square-planar and diamagnetic. 1H NMR spectroscopy established the cis <==> trans equilibrium of 1a/1b, 2a/2b, and 3a/3b in CH2Cl2 solution where the isomerization rate is very fast for the Ni, intermediate for the Pd, and very slow for the Pt species. It is shown that the electronic structures of 1a/1b, 2a/2b, 3a, and 3b are best described as diradicals with a singlet ground state. The spectro- and electrochemistries of all complexes display the usual full electron transfer series where the monocation, the neutral species, the mono- and dianions have been spectroscopically characterized. X-band EPR spectra of the monocations [1a/1b]+ and [3a]+ support the assignment of an oxidation-state distribution as predominantly [M(II)(L(ISQ))(L(IBQ))]+ where (L(IBQ))0 represents the o-iminothionequinone level. In contrast, the EPR spectra of the monoanions [1a/1b]- and [3a]- indicate an [M(II)(L(ISQ))(L(AP)-H)]- distribution but with a significant contribution of the [M(I)(L(ISQ))(2)]- resonance hybrid; (L(AP)-H)2- represents the o-imidothiophenolato(2-) oxidation level. Analysis of the geometric features of 120 published structures of complexes containing ligands of the o-aminothiophenolate type show that high precision X-ray crystallography allows to discern the differing protonation and oxidation levels of these ligands. o-Aminothiophenolates are unequivocally shown to be noninnocent ligands; the (L(ISQ))1- radical form is quite prevalent in coordination compounds and the electronic structure of a number of published complexes must be reconsidered.  相似文献   

14.
This study shows, for the first time, the advantages of combining two transition-metal complexes as selective proteolytic reagents. In this procedure, cis-[Pt(en)(H(2)O)(2)](2+) is followed by [Pd(H(2)O)(4)](2+). In the peptide AcAla-Lys-Tyr-Gly-Gly-Met-Ala-Ala-Arg-Ala, the Pt(II) reagent cleaves the Met6-Ala7 peptide bond, whereas the Pd(II) reagent cleaves the Gly4-Gly5 bond. In the peptide AcVal-Lys-Gly-Gly-His-Ala-Lys-Tyr-Gly-Gly-Met-Ala-Ala-Arg-Ala, the Pt(II) reagent cleaves the Met11-Ala12 peptide bond, whereas the Pd(II) reagent cleaves the Gly3-Gly4 bond. All cleavage reactions are regioselective and complete at pH 2.0 and 60 degrees C. Each metal ion binds to an anchoring side chain and then, as a Lewis acid, activates a proximal peptide bond toward hydrolysis by the solvent water. The selectivity in cleavage is a consequence of the selectivity in this initial anchoring. Both Pt(II) and Pd(II) reagents bind to the methionine side chain, whereas only the Pd(II) reagent binds to the histidine side chain under the reaction conditions. Consequently, only methionine residues direct the cleavage by the Pt(II) reagent, whereas both methionine and histidine residues direct the cleavage by the Pd(II) reagent. The Pt(II) reagent cleaves the first bond downstream from the anchor, i.e., the Met-Z bond. The Pd(II) reagent cleaves the second bond upstream from the anchor, i.e., the X-Y bond in the X-Y-Met-Z and in the X-Y-His-Z segments. The diethylenetriamine complex [Pt(dien)(H(2)O)](2+) cannot promote cleavage. Its prior binding to the Met11 residue in the second peptide prevents the Pd(II) reagents from binding to Met11 and cleaving the Gly9-Gly10 bond and directs the cleavage by the Pd(II) reagent exclusively at the Gly3-Gly4 bond. Our new method was tested on equine myoglobin, which contains 2 methionine residues and 11 histidine residues. The complete methionine-directed cleavage of the Met55-Lys56 and Met131-Thr132 bonds by the Pt(II) reagent produced three fragments, suitable for various biochemical applications because they are relatively long and contain amino and carboxylic terminal groups. The deliberately incomplete histidine-directed cleavage of the long fragments 1.55 and 56.131 at many sites by the Pd(II) reagent produced numerous short fragments, suitable for protein identification by mass spectrometry. The ability of combined Pt(II) and Pd(II) complexes to cleave proteins with explicable and adjustable selectivity and with good yields bodes well for their greater use in biochemical and bioanalytical practice.  相似文献   

15.
A series of palladium(II) and platinum(II) complexes possessing pentafluorophenyl ligands of the general formula [M(L-L)(C6F5)Cl][space](M = Pd 3; L-L=tmeda (N,N,N',N',-tetramethylethylenediamine) a; 1,2-bis(2,6-dimethylphenylimino)ethane) b; dmpe (1,2-bis(dimethylphosphino)ethane) c; dcpe (1,2-bis(dicyclohexylphosphino)ethane) d; Pt ; L-L=tmeda a; 1,2-bis[3,5-bis(trifluoromethyl)phenylimino]-1,2-dimethylethane b; dmpe c; dcpe d) were readily synthesized from the dimer [M(C6F5)(tht)(mu-Cl)2] (M=Pd 1b, Pt 2b; tht=tetrahydrothiophene) and the corresponding bidentate ligand. In the case of palladium, the corresponding iodo analogues (6a-c) were readily synthesized in a one-pot reaction from [Pd2(dba)3], iodopentafluorobenzene, and the appropriate ligand. The platinum complexes 4c-d were then converted to the water complexes [Pt(L-L)(C6F5)(OH2)]OTf (L-L =dmpe 7a; dcpe 7b)via reaction with AgOTf in the presence of water. Attempts to convert the palladium complexes 3c-d to the corresponding water complexes resulted in the disproportionation of the intermediate water complex to form [Pd(L-L)(C6F5)2] (L-L=dmpe 8) or [Pd(L-L)2][OTf]2(L-L=dcpe 9). Upon standing in solution for prolonged periods, complex 7a undergoes an identical disproportionation reaction to the Pd analogues to form [Pt(L-L)(C6F5)2] (L-L=dmpe 10). Complexes 4c and 4d were converted to the corresponding hydrides (11b-c, respectively) using two different hydride sources: 11a was formed by the reaction of with NaBH4 in refluxing THF, while 11b was synthesized in near quantitative yield using [Cp2ZrH2] in refluxing THF. Attempts to synthesize eta2-tetrafluorobenzyne complexes [Pt(L-L)(C6F4)] (L-L=dmpe, dcpe) from reaction of 11a-b with butyllithium were unsuccessful. The molecular structures of 3a,4a, 4c, 4d, 6b, 7a, 8, 11b and have been determined by X-ray crystallographic studies, and are discussed.  相似文献   

16.
A series of chiral M(6)M'(8) cluster compounds having twelve free carboxylate groups, [M(6)M'(8)(D-pen-N,S)(12)X](5-) (M/M'/X = Pd(II)/Ag(I)/Cl(-) ([1](5-)), Pd(II)/Ag(I)/Br(-) ([2](5-)), Pd(II)/Ag(I)/I(-) ([3](5-)), Ni(II)/Ag(I)/Cl(-) ([4](5-)), Pt(II)/Ag(I)/Cl(-) ([5](5-)), Pd(II)/Cu(I)/Cl(-) ([6](5-)); D-H(2)pen = D-penicillamine), in which six cis-[M(D-pen-N,S)(2)](2-) square-planar units are bound to a [M'(8)X](7+) cubic core through sulfur-bridges, was synthesized by the reactions of cis-[M(D-pen-N,S)(2)](2-) with M' in water in the presence of halide ions. These M(6)M'(8) clusters readily reacted with La(3+) in aqueous buffer to form La(III)(2)M(6)M'(8) heterotrimetallic compounds, La(2)[1](CH(3)COO), La(2)[2](CH(3)COO), La(2)[3](CH(3)COO), La(2)[4](CH(3)COO), La(2)[5](CH(3)COO) and La(2)[6]Cl, in which the M(6)M'(8) cluster units are linked by La(3+) ions through carboxylate groups in a 1?:?2 ratio. While the La(III)(2)M(6)Ag(I)(8) compounds derived from [1](5-), [2](5-), [3](5-), [4](5-) and [5](5-) have a 1D helix supramolecular structure with a right-handedness, the La(III)(2)Pd(II)(6)Cu(I)(8) compound derived from [6](5-) has a 2D sheet-like structure with a triangular grid of the Pd(II)(6)Cu(I)(8) cluster units. When aqueous HCl was added to the reaction solution of [6](5-) and La(3+), another La(III)(2)Pd(II)(6)Cu(I)(8) heterotrimetallic compound, La(2)[6]Cl·HCl, in which the Pd(II)(6)Cu(I)(8) cluster units are linked by La(3+) ions to form a 2D structure with a rectangular grid, was produced. The solid-state structures of these La(III)(2)M(6)M'(8) compounds, determined by single-crystal X-ray crystallography, along with the spectroscopic properties of the M(6)M'(8) cluster compounds in solution, are described.  相似文献   

17.
The previously synthesised Schiff-base ligands 2-(2-Ph(2)PC(6)H(4)N[double bond, length as m-dash]CH)-R'-C(6)H(3)OH (R'= 3-OCH(3), HL(1); 5-OCH(3), HL(2); 5-Br, HL(3); 5-Cl, HL(4)) were prepared by a faster, more efficient route involving a microwave assisted co-condensation of 2-(diphenylphosphino)aniline with the appropriate substituted salicylaldehyde. HL(1-4) react directly with M(II)Cl(2)(M = Pd, Pt) or Pt(II)I(2)(cod) affording neutral square-planar complexes of general formula [M(II)Cl(eta(3)-L(1-4))](M = Pd, Pt, 1-8) and [Pt(II)I(eta(3)-L(1-4))](M = Pd, Pt, 9-12). Reaction of complexes 1-4 with the triarylphosphines PR(3)(R = Ph, p-tolyl) gave the novel ionic complexes [Pd(II)(PR(3))(eta(3)-L(1-4))]ClO(4)(13-20). Substituted platinum complexes of the type [Pt(II)(PR(3))(eta(3)-L(1-4))]ClO(4)(R = P(CH(2)CH(2)CN)(3)21-24) and [Pt(II)(P(p-tolyl)(3))(eta(3)-L(3,4))]ClO(4)( 25 and 26 ) were synthesised from the appropriate [Pt(II)Cl(eta(3)-L(1-4))] complex (5-8) and PR(3). The complexes are characterised by microanalytical and spectroscopic techniques. The crystal structures of 3, 6, 10, 15, 20 and 26 were determined and revealed the metal to be in a square-planar four-coordinate environment containing a planar tridentate ligand with an O,N,P donor set together with one further atom which is trans to the central nitrogen atom.  相似文献   

18.
Mesocyclic thioether-aminophosphonite ligands, {-OC10H6(mu-S)C10H6O-}PNC4H8O (2a, 4-(dinaphtho[2,1-d:1',2'-g][1,3,6,2]dioxathiaphosphocin-4-yl)morpholine) and {-OC10H6(mu-S)C10H6O-}PNC4H8NCH3 (2b, 1-(dinaphtho[2,1-d:1',2'-g][1,3,6,2]dioxathiaphosphocin-4-yl)-4-methylpiperazine) are obtained by reacting {-OC10H6(mu-S)C10H6O-}PCl (1) with corresponding nucleophiles. The ligands 2a and 2b react with (PhCN)2PdCl2 or M(COD)Cl2 (M = Pd(II) or Pt(II)) to afford P-coordinated cis-complexes, [{(-OC10H6(mu-S)C10H6O-)PNC4H8X-kappaP}2MCl2] (3a, M = Pd(II), X = O; 3b, M = Pd(II), X = NMe; 4a, M = Pt(II), X = O; 4b, M = Pt(II), X = NMe). Compounds 2a and 2b, upon treatment with [Pd(eta3-C3H5)Cl]2 in the presence of AgOTf, produce the P,S-chelated cationic complexes, [{(-OC10H6(mu-S)C10H6O-)PNC4H8X-kappaP,kappaS}Pd(eta3-C3H5)](CF3SO3) (5a, X = O and 5b, X = NMe). Treatment of 2a and 2b with (PhCN)2PdCl2 in the presence of trace amount of H2O affords P,S-chelated anionic complexes, [{(-OC10H6(mu-S)C10H6O-)P(O)-kappaP,kappaS}PdCl2](H2NC4H8X) (6a, X = O and 6b, X = NMe), via P-N bond cleavage. The crystal structures of compounds 1, 2a, 2b, 4a, and 6a are reported. Compound 6a is a rare example of crystallographically characterized anionic transition metal complex containing a thioether-phosphonate ligand. Most of these palladium complexes proved to be very active catalysts for the Suzuki-Miyaura reaction with excellent turnover number ((TON), up to 9.2 x 10(4) using complex 6a as a catalyst).  相似文献   

19.
The influence of the presence of DNA on the kinetics of cisplatin (cis-[PtCl2(NH3)2]) aquation (replacement of Cl- by H2O) and anation (replacement of H2O by Cl-) involved in the hydrolysis of cisplatin have been determined by two-dimensional [1H,15N] HMQC NMR spectroscopy. Single-stranded dT20 and double-stranded [d(AT)10]2 oligonucleotides were used as DNA models, avoiding guanines which are known to react rapidly with aquated cisplatin forms. Reactions starting from cis-[PtCl2(15NH3)2], or from a stoichiometric mixture of cis-[Pt(15NH3)2(H2O)2]2+ and Cl- (all 0.5 mM Pt(II); in ionic strength, adjusted to 0.095 M or 0.011 M with NaClO4, pH between 3.0 and 4.0) were followed in an NMR tube in both the absence and presence of 0.7 mM dT20 or [d(AT)10]2. In the presence of dT20, we observed a slight and ionic-strength-independent decrease (15-20 %) of the first aquation rate constant, and a more significant decrease of the second anation rate constant. The latter was more important at low ionic strength, and can be explained by efficient condensation of cis-[Pt(15NH3)2(H2O)2]2+ on the surface of single-stranded DNA, in a region depleted of chloride anions. At low ionic strength, we observed an additional set of [1H,15N] HMQC spectral signals indicative of an asymmetric species of PtN2O2 coordination, and we assigned them to phosphate-bound monoadducts of cis-[Pt(15NH3)2(H2O)2]2+. Double-stranded [d(AT)10]2 slowed down the first aquation step also by approximately 15 %; however, we could not determine the influence on the second hydrolysis step because of a significant background reaction with cis-[Pt(NH3)2(H2O)2]2+.  相似文献   

20.
Tri(1‐cyclohepta‐2, 4, 6‐trienyl)phosphane, P(C7H7)3 ([P] when coordinated to a metal atom), was used to stabilize complexes of platinum(II) and palladium(II) with chelating dichalcogenolato ligands as [P]M(E∩E) [E = S, ∩ = CH2CH2, M = Pt ( 3a ); E = S, ∩ = 1, 2‐C6H4, M = Pt ( 5a ), Pd ( 6a ); E = S, ∩ = C(O)C(O), M = Pt ( 7a ), Pd ( 8a ); E = S, Se, ∩ = 1, 2‐C2(B10H10), M = Pt ( 9a, 9b ), Pd ( 10a, 10b ); E = S, ∩ = Fe2(CO)6, M = Pt ( 11a ), Pd ( 12a )]. Starting materials in all reactions were [P]MCl2 with M = Pt ( 1 ) and Pd ( 2 ). Attempts at the synthesis of [P]M(ER)2 with non‐chelating chalcogenolato ligands were not successful. All new complexes were characterized by multinuclear magnetic resonance spectroscopy in solution (1H, 13C, 31P, 77Se and 195Pt NMR), and the molecular structures of 5a and 12a were determined by X‐ray analysis. Both in the solid state and in solution the ligand [P] is linked to the metal atom by the P‐M bond and by η2‐C=C coordination of the central C=C bond of one of the C7H7 rings. In solution, intramolecular exchange between coordinated and non‐coordinated C7H7 rings is observed, the exchange process being markedly faster in the case of M = Pd than for M = Pt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号