首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescence resonance energy transfer (FRET) has been used to study the global folding of an uranyl (UO22+)‐specific 39E DNAzyme in the presence of Mg2+, Zn2+, Pb2+, or UO22+. At pH 5.5 and physiological ionic strength (100 mM Na+), two of the three stems in this DNAzyme folded into a compact structure in the presence of Mg2+ or Zn2+. However, no folding occurred in the presence of Pb2+ or UO22+; this is analogous to the “lock‐and‐key” catalysis mode first observed in the Pb2+‐specific 8–17 DNAzyme. However, Mg2+ and Zn2+ exert different effects on the 8–17 and 39E DNAzymes. Whereas Mg2+ or Zn2+‐dependent folding promoted 8–17 DNAzyme activity, the 39E DNAzyme folding induced by Mg2+ or Zn2+ inhibited UO22+‐specific activity. Group IIA series of metal ions (Mg2+, Ca2+, Sr2+) also caused global folding of the 39E DNAzyme, for which the apparent binding affinity between these metal ions and the DNAzyme decreases as the ionic radius of the metal ions increases. Because the ionic radius of Sr2+ (1.12 Å) is comparable to that of Pb2+ (1.20 Å), but contrary to Pb2+, Sr2+ induces the DNAzyme to fold under identical conditions, ionic size alone cannot account for the unique folding behaviors induced by Pb2+ and UO22+. Under low ionic strength (30 mM Na+), all four metal ions (Mg2+, Zn2+, Pb2+, and UO22+), caused 39E DNAzyme folding, suggesting that metal ions can neutralize the negative charge of DNA‐backbone phosphates in addition to playing specific catalytic roles. Mg2+ at low (<2 mM ) concentration promoted UO22+‐specific activity, whereas Mg2+ at high (>2 mM ) concentration inhibited the UO22+‐specific activity. Therefore, the lock‐and‐key mode of DNAzymes depends on ionic strength, and the 39E DNAzyme is in the lock‐and‐key mode only at ionic strengths of 100 mM or greater.  相似文献   

2.
MjHsp16.5 was separately labeled by fluorescent dye Cy3 and Cy5.5. The dissociation event of a single 24-mer MjHsp16.5 molecule was captured by single-molecule imaging (SMI). Temperature-regulated subunit exchange was revealed by the real-time fluorescence resonance energy transfer (FRET). The combination of single-molecular statistics and kinetic parameters from FRET experiments leads to the conclusion that below 75 degrees C the rate-determining step of the subunit exchange was the dissociation of the dye-labeled 24-mer in which the dimer was intact, whereas above 75 degrees C, smaller units emerged in the exchange and the rate-determining step had the character of a bimolecular reaction.  相似文献   

3.
Two or eight zinc triphenyl porphyrins were conjugated with Zn-phthalocyanine or H2-phthalocyanine to form ZnPc-(ZnTPP)2, ZnPc-(ZnTPP)8, H2Pc-(ZnTPP)2 and H2Pc-(ZnTPP)8. Energy transfers from the porphyrin moiety to phthalocyanine part were quantitatively studied with the modality of fluorescence resonance energy transfer (FRET). By measuring the fluorescence increment from the phthalocyanine moiety and the decrease from porphyrin part under selective excitation at the B band of the porphyrin part in those conjugated compounds and their equimolar mixture of compositions, energy transfer efficiencies were estimated to be 90% for H2Pc-(ZnTPP)8 and ZnPc-(ZnTPP)8, and 60%, 30% for ZnPc-(ZnTPP)2 and H2Pc-(ZnTPP)2, respectively.  相似文献   

4.
Metal-dependent cleavage activities of the 8-17 DNAzyme were found to be inhibited by Tb(III) ions, and the apparent inhibition constant in the presence of 100 microM of Zn(II) was measured to be 3.3+/-0.3 microM. The apparent inhibition constants increased linearly with increasing Zn(II) concentration, and the inhibition effect could be fully rescued with addition of active metal ions, indicating that Tb(III) is a competitive inhibitor and that the effect is completely reversible. The sensitized Tb(III) luminescence at 543 nm was dramatically enhanced when Tb(III) was added to the DNAzyme-substrate complex. With an inactive DNAzyme in which the GT wobble pair was replaced with a GC Watson-Crick base pair, the luminescence enhancement was slightly decreased. In addition, when the DNAzyme strand was replaced with a complete complementary strand to the substrate, no significant luminescence enhancement was observed. These observations suggest that Tb(III) may bind to an unpaired region of the DNAzyme, with the GT wobble pair playing a role. Luminescence lifetime measurements in D(2)O and H(2)O suggested that Tb(III) bound to DNAzyme is coordinated by 6.7+/-0.2 water molecules and two or three functional groups from the DNAzyme. Divalent metal ions competed for the Tb(III) binding site(s) in the order Co(II)>Zn(II)>Mn(II)>Pb(II)>Ca(II) approximately Mg(II). This order closely follows the order of DNAzyme activity, with the exception of Pb(II). These results indicate that Pb(II), the most active metal ion, competes for Tb(III) binding differently from other metal ions such as Zn(II), suggesting that Pb(II) may bind to a different site from that for the other metal ions including Zn(II) and Tb(III).  相似文献   

5.
Control of emission by intermolecular fluorescence resonant energy transfer (IFRET) and intermolecular charge transfer (ICT) is investigated with the quantum-chemistry method using two-dimensional (2D) and three-dimensional (3D) real space analysis methods. The work is based on the experiment of tunable emission from doped 1,3,5-triphenyl-2-pyrazoline (TPP) organic nanoparticles (Peng, A. D.; et al. Adv. Mater. 2005, 17, 2070). First, the excited-state properties of the molecules, which are studied (TPP and DCM) in that experiment, are investigated theoretically. The results of the 2D site representation reveal the electron-hole coherence and delocalization size on the excitation. The results of 3D cube representation analysis reveal the orientation and strength of the transition dipole moments and intramolecular or intermolecular charge transfer. Second, the photochemical quenching mechanism via IFRET is studied (here "resonance" means that the absorption spectrum of TPP overlaps with the fluorescence emission spectrum of DCM in the doping system) by comparing the orbital energies of the HOMO (highest occupied molecular orbital) and the LUMO (lowest unoccupied molecular orbital) of DCM and TPP in absorption and fluorescence. Third, for the DCM-TPP complex, the nonphotochemical quenching mechanism via ICT is investigated. The theoretical results show that the energetically lowest ICT state corresponds to a pure HOMO-LUMO transition, where the densities of the HOMO and LUMO are strictly located on the DCM and TPP moieties, respectively. Thus, the lowest ICT state corresponds to an excitation of an electron from the HOMO of DCM to the LUMO of TPP.  相似文献   

6.
We describe a two-dimensional (2D), four-color fluorescence resonance energy transfer (FRET) scheme, in which the conformational dynamics of a protein is followed by simultaneously observing the FRET signal from two different donor-acceptor pairs. For a general class of models that assume Markovian conformational dynamics, we relate the properties of the emission correlation functions to the rates of elementary kinetic steps in the model. We further use a toy folding model that treats proteins as chains with breakable cross-links to examine the relationship between the cooperativity of folding and FRET data and to establish what additional information about the folding dynamics can be gleaned from 2D, as opposed to one-dimensional FRET experiments. We finally discuss the potential advantages of the four-color FRET over the three-color FRET technique.  相似文献   

7.
在λcx/λem=450/580nm,0.1mol/L的HCl溶液中,番红花红T和吖啶橙能够发生有效的共振能量转移,使得番红花红T荧光增强,同时吖啶橙的荧光猝灭,而NO2^-的加入使得两者的荧光强度同时减弱。由此建立了一种新的测定痕量NO2^-的方法。结果表明,NO2^-在0.02~10μg/mL范围内与染料的荧光强度减弱程度呈良好的线性关系,方法检出限为1.73ng/mL;该法用于食品中NO2^-的测定,回收率为105.0%~112.4%。  相似文献   

8.
9.
Chen  Changhui  Wei  Min  Liu  Yuanjian  Xu  Ensheng  Wei  Wei  Zhang  Yuanjian  Liu  Songqin 《Mikrochimica acta》2017,184(9):3453-3460
Microchimica Acta - The detection of telomerase activity is important in cancer diagnosis and in screening for anti-cancer drugs. This work describes a fluorometric method for the determination of...  相似文献   

10.
Pyrogallol[4]arenes were monofunctionalized with fluorophores and fluorescence resonance energy transfer (FRET) was used to follow the self-assembly and exchange of the hexameric capsules at micromolar concentrations.  相似文献   

11.
随着生物分析技术进入了后基因组时代,生命科学领域里的研究课题不断深入,DNA、RNA、蛋白质和其他生物大分子的检测技术发展十分迅速,生命科学中单分子分析技术不断揭示出生命活动的客观规律.相关的新的分析方法和仪器不断取得进展,成为生命科学的前沿领域.  相似文献   

12.
随着生物分析技术进入了后基因组时代,生命科学领域里的研究课题不断深入,DNA、RNA、蛋白质和其他生物大分子的检测技术发展十分迅速,生命科学中单分子分析技术不断揭示出生命活动的客观规律.相关的新的分析方法和仪器不断取得进展,成为生命科学的前沿领域.  相似文献   

13.
The constituent cavitands of a cylindrical capsule were labeled with donor and acceptor fluorophores, and fluorescence resonance energy transfer (FRET) was employed as a tool to study the dynamics of self-assembly. When donor and acceptor dyes are present in the same capsular assembly, they are brought within 25 A of each other, a distance suitable for efficient energy transfer to occur between them. This allowed for the study of interacting species at nanomolar concentrations providing information unattainable from NMR experiments. The kinetic stability of the capsule in the presence of various guest molecules was investigated which revealed a range of more than 4 orders of magnitude in the rates of cylindrical capsule exchange. While the thermodynamic stability of the capsule generally dictates the self-assembly dynamics, it was discovered that longer rigid guests can impart a significant kinetic barrier to monomer exchange.  相似文献   

14.
The pros and cons of single-molecule vs ensemble-averaged fluorescence resonance energy transfer (FRET) experiments, performed on proteins, are explored with the help of Langevin dynamics simulations. An off-lattice model of the polypeptide chain is employed, which gives rise to a well-defined native state and two-state folding kinetics. A detailed analysis of the distribution of the donor-acceptor distance is presented at different points along the denaturation curve, along with its dependence on the averaging time window. We show that unique information on the correlation between structure and dynamics, which can only be obtained from single-molecule experiments, is contained in the correlation between the donor-acceptor distance and its displacement. The latter is shown to provide useful information on the free energy landscape of the protein, which is complementary to that obtained from the distribution of donor-acceptor distances.  相似文献   

15.
Analysis of anisotropy in single-molecule fluorescence experiments using the probability distribution analysis (PDA) method is presented. The theory of anisotropy-PDA is an extension of the PDA theory recently developed for the analysis of F?rster resonance energy transfer (FRET) signals [Antonik, M.; et al. J. Phys. Chem. B 2006, 110, 6970]. The PDA method predicts the shape of anisotropy histograms for any given expected ensemble anisotropy, signal intensity distribution, and background. Further improvements of the PDA theory allow one to work with very low photon numbers, i.e., starting from the level of background signal. Analysis of experimental and simulated data shows that PDA has the major advantage to unambiguously distinguish between shot noise broadening and broadening caused by heterogeneities in the sample. Fitting of experimental histograms yields anisotropy values of individual species, which can be directly compared with those measured in ensemble experiments. Excellent agreement between the ensemble data and the results of PDA demonstrates a good absolute accuracy of the PDA method. The precision in determination of mean values depends mainly on the total number of photons, whereas the ability of PDA to detect the presence of heterogeneities strongly depends on the time window length. In its present form PDA can be also applied to computed fluorescence parameters such as FRET efficiency and scatter-corrected fluorescence anisotropy. Extension of the PDA theory to low photon numbers makes it possible to apply PDA to dynamic systems, for which high time resolution is required. In this way PDA is developed as a sensitive tool to detect biomolecular heterogeneities in space and time.  相似文献   

16.
Xie F  Zhu J  Deng C  Huang G  Mitchelson K  Cheng J 《The Analyst》2012,137(4):1013-1019
In this paper, we describe a comprehensive general system adapted for quantitative fluorescence resonance energy transfer (FRET) measurement using signals from three channels of a fluorescence instrument. The general FRET measurement system involves two established methods, as well as two novel approaches. Unlike the previous measurements, which can be taken correctly only when the quantity of the acceptor is greater than or equal to that of the donor, one of our novel methods can overcome this obstacle and take quantitative FRET measurements when the donor is in excess of the acceptor. Hence the general FRET measurement system allowed one to determine the exact distance when the donor and acceptor were present in different quantities, and integrated the methods for quantitative FRET measurements. The uniformity of measured values and utility of each method were validated using molecular standards based on DNA oligonucleotide rulers. We also discussed and validated the use of a novel method for estimating the relative quantities of the donor and acceptor fluorophores when they were not known before an appropriate method of this system can be selected.  相似文献   

17.
We developed a new single nucleotide polymorphism (SNP) genotyping method based on single-molecule multi-color fluorescence resonance energy transfer (FRET). We demonstrated that this new method uses less than 1 fmol of sample and is also highly quantitative with a detection level of 1% or lower in the minor allele fraction.  相似文献   

18.
Fluorescence resonance energy transfer (FRET) is a distance-sensitive method that correlates changes in fluorescence intensity with conformational changes, for example, of biomolecules in the cellular environment. Applied to the gas phase in combination with Fourier transform ion cyclotron resonance mass spectrometry, it opens up possibilities to define structural/conformational properties of molecular ions, in the absence of solvent, and without the need for purification of the sample. For successfully observing FRET in the gas phase it is important to find suitable fluorophores. In this study several fluorescent dyes were examined, and the correlation between solution-phase and gas-phase fluorescence data were studied. For the first time, FRET in the gas phase is demonstrated unambiguously.  相似文献   

19.
Short noncoding RNAs are increasingly recognized as key regulators of essential cellular processes such as RNA interference. A better understanding of the processes by which such RNAs are degraded is necessary to expand our knowledge of these processes and our ability to harness them. To this end we have developed a novel fluorescence resonance energy transfer (FRET) assay to monitor in real-time the degradation kinetics of short RNAs by a purified RNase and S100 cytosolic HeLa cell extract. An unstructured RNA is found to be degraded more rapidly than a stem-loop RNA under all conditions tested except for low concentrations of cell extract, showing that secondary structure confers protection against RNase activity. The assay also allows for the quantitative comparison of inhibitors such as Contrad70 and aurin tricarboxylic acid (ATA). Finally, gel electrophoretic FRET analysis confirms that HeLa cell extract is dominated by 5' to 3' exonucleolytic activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号