共查询到20条相似文献,搜索用时 15 毫秒
1.
Ioannis Thivaios Ioannis Diamantis Georgios Bokias Joannis K. Kallitsis 《European Polymer Journal》2012,48(7):1256-1265
The pH- and temperature-responsive optical properties of a quinoline-labeled poly(N-isopropylacrylamide) copolymer are explored in aqueous solution and compared to the respective behavior of a similar quinoline-labeled poly(N,N-dimethylacrylamide) copolymer. These copolymers, P(NIPAM-co-SDPQ) and P(DMAM-co-SDPQ), were prepared through free radical copolymerization of 2,4-diphenyl-6-(4-vinylphenyl)quinoline (SDPQ) with the thermosensitive N-isopropylacrylamide (NIPAM) and the hydrophilic N,N-dimethylacrylamide (DMAM), respectively. Both copolymers exhibit the well-known pH-controlled optical response of quinoline unit in aqueous solution and the emitted color changes from blue to green upon decreasing pH. Nevertheless, a ~20 nm emission shift is observed upon heating the aqueous P(NIPAM-co-SDPQ) solution, regardless of pH, due to the formation of hydrophobic microdomains (Nile Red probing), as a consequence of the Lower Critical Solution Temperature (LCST) behavior of this copolymer in water. Interestingly, this LCST behavior also imposes the partial deprotonation of the otherwise protonated SDPQ unit at pH = 2 and the emission of the basic form appears upon increasing temperature, suggesting that the acid/base equilibrium of the quinoline unit is significantly temperature-controlled, when introduced in the thermosensitive poly(N-isopropylacrylamide) chain. 相似文献
2.
The thermal properties and temperature-responsive nanoparticle formation of poly(N-isopropylacrylamide) grafted with single-stranded DNA (PNIPAAm-g-DNA) were investigated. Copolymerization between nonamer single-stranded DNA with a vinyl group at its 5' terminus (DNA macromonomer) and NIPAAm was carried out so that the DNA macromonomer unit content should be less than 1 mol %. The turbidimetry and differential scanning calorimetry of the copolymer showed that the transition temperature increased and the enthalpy change of the phase transition decreased with increasing DNA macromonomer content in the copolymers, indicating that the DNA macromonomer behaves as a hydrophilic part in the copolymer and that the hydrophilicity is greater than that of sodium styrenesulfonate. Above the phase transition temperature, the copolymers formed colloidal nanoparticles with a dehydrated PNIPAAm core surrounded by DNA. When the formation of particles was conducted at higher temperatures, the dehydration of the copolymers proceeded such that the hydrodynamic radius (Rh) of the particles decreased. From the results of light scattering measurements, we calculated the surface area of particles occupied by one DNA (S(DNA)). The S(DNA) value decreased with increasing formation temperature, indicating that the DNA density on the particle surface increases with increasing formation temperature. The increase in the DNA density was also confirmed from the zeta-potential measurement of the particle. When MgCl2 was added to the copolymer solutions, the anionic charge of DNA was neutralized by Mg2+ so that Rh and the molecular weight of the particles increased with the increasing MgCl2 concentration. The turbidimetric detection of a target DNA was successfully demonstrated by utilizing the stability decrease of the colloidal particle upon hybridization on the particle surface. 相似文献
3.
The temperature dependence of the dimensions of poly(N-isopropylacrylamide) (PNIPAM) adsorbed on two different colloidal silica particles was studied with dynamic light scattering.
The hydrodynamic diameter was measured when the temperature was varied stepwise from 10 to 60 °C. PNIPAM molecules free in
solution undergo a conformational transition at the θ temperature. We have found that PNIPAM adsorbed onto silica particles
also undergoes a transition below the θ temperature. When a small amount of polymer was adsorbed the coil-to-globule transition
at the θ temperature did not occur. Potentiometric titrations showed that the surface charge of the silica particles was not
affected by the polymer adsorption. Sodium dodecyl sulfate (SDS) (100–1200 mg/l) was added to improve the stability. The particles
with a higher zeta potential required a smaller addition of SDS to prevent coagulation compared to the particles with a smaller
surface potential. For low additions of SDS the transition curves of adsorbed PNIPAM were unaffected. For larger additions
of SDS the collapse of PNIPAM was shifted to higher temperatures. When as much as 1200 mg/l SDS was added, two regions with
weak transitions were observed before the collapse. It was also observed that the presence of SDS results in a smaller adsorption
of PNIPAM onto the particles. The addition of SDS strongly increased the magnitude of the electrophoretic mobility of the
polymer–particle unit. From the electrophoretic measurements an electrokinetic layer thickness was calculated and it was found
to be smaller than the corresponding hydrodynamic layer thickness, as obtained by dynamic light scattering.
Received: 14 December 1999/In revised form: 22 February 2000/Accepted: 6 March 2000 相似文献
4.
Poly(N-isopropylacrylamide) oligomer was immobilized onto a silica gel surface. The gel adsorbed a hydrophobic protein γ-globulin (IgG) at 37°C, however, did not adsorb IgG at 24°C. The adsorbed IgG at 37°C was adsorbed by lowering the temperatue, No adsorption of a hydrophilic protein bovin serum albumin (BSA) onto this matrix was observed at 37°C nor 24°C. 相似文献
5.
Novel synthesis of macroporous poly(N-isopropylacrylamide) hydrogels using oil-in-water emulsions 总被引:1,自引:0,他引:1
Porous N-isopropylacrylamide (NIPA) hydrogels having a unique structure, that is, spherelike cavities distributed randomly and a homogeneous network in the gel phase, were successfully synthesized by means of an emulsion templating method; this method involves the synthesis of NIPA gels in an oil-in-water (O/W) emulsion by free radical copolymerization with a cross-linker, followed by washing (removal) of the dispersed oil as a pore template (porogen). The synthesis conditions, O/W volume ratio, amount of added surfactant, and monomer concentration affect the internal pore structure, equilibrium swelling, and swelling/shrinking kinetics. A porous hydrogel swollen at 10 degrees C has a pore diameter distribution in the range of 1-40 microm, which was observed with a scanning electron microscope. Scanning electron micrographs and swelling degree reveal that the pore size and porosity can be adjusted by varying the O/W volume ratios and surfactant amounts. The porous hydrogels show very rapid swelling/shrinking in accordance with the temperature swing. The fast response is attributed to the convection flow of water through the macropores. In addition to a faster response gel, the emulsion templating method can yield potentially intelligent gels in which the pores function as spaces for reaction, separation, and storage. 相似文献
6.
Tu H Heitzman CE Braun PV 《Langmuir : the ACS journal of surfaces and colloids》2004,20(19):8313-8320
Patterned poly(N-isopropylacrylamide) (PNIPAAm) brushes were fabricated on oxidized silicon wafers by surface-initiated atom transfer radical polymerization of N-isopropylacrylamide from a micropatterned initiator. The patterned surface initiator was prepared by microcontact-printing octadecyltrichlorosilane and backfilling with 3-(aminopropyl)triethoxysilane followed by amidization with 2-bromo-2-methylpropionic acid. XPS and FTIR confirmed the chemical structure of the surface initiator and the PNIPAAm brushes. Surface analysis techniques, including ellipsometry, contact angle goniometry, and X-ray reflectometry (XRR), were used to characterize the thickness, roughness, hydrophilicity, and density of the polymer brushes. Tapping-mode AFM imaging confirmed the successful patterning of the PNIPAAm brushes on the oxidized silicon substrates. Variable temperature ellipsometry indicated that the lower critical solution temperature of the hydrated PNIPAAm brush was broad, occurring over the range of 20-35 degrees C. A solvatochromic fluorophore, 6-propionyl-2-dimethylaminonaphthalene (Prodan), in the PNIPAAm brush layers yielded a very similar emission to that in DMF, which can be attributed to the similarity of their chemical structures. Fluorescence microscopy further proved the successful patterning of the polymer brushes and suggested that the Prodan is localized in the patterned PNIPAAm brushes and excluded from the surrounding octadecyltrichlorosilane regions. 相似文献
7.
Mizukami M Zhong G Zhang L Fukuchi I Kurihara K 《Langmuir : the ACS journal of surfaces and colloids》2008,24(21):12364-12368
We have found that alcohols, carboxylic acids, and amides self-assemble into a unique molecular architecture, a hydrogen-bonded molecular macrocluster, when they are selectively adsorbed onto silica (glass and oxidized silicon) surfaces in nonpolar solvents such as cyclohexane. In our previous study, this phenomenon could be successfully applied to fabricate molecularly flat and defect-free nanofilms of several tens of nanometers thickness. In this study, we prepared a poly(N-isopropylacrylamide) [poly(NIPAAm)] film on the basis of in situ polymerization of a monomer macrocluster layer formed on silica surfaces and investigated how the molecular arrangement of the adsorbed NIPAAm monomers affects the efficiency of the polymerization of them. Poly(NIPAAm) films were prepared by the following two methods: (1) the one-solution method, the in situ photopolymerization of an NIPAAm monomer adsorption layer on silica in one solution (chloroform, cyclohexane, and toluene), and (2) the solution exchange method, adsorption of NIPAAm monomers onto a silica surface from NIPAAm (0.1 mol %) in chloroform, exhange of the solution to 0.005 mol % NIPAAm in cyclohexane, and then polymerization by UV irradiation. By the solution exchange method, molecularly flat, defect-free, and thermoresponsive films were obtained and the thickness could be controlled by the irradiation time, while only several nanometers thickness could be attained by the one-solution method. The structure of NIPAAm adsorption layers formed in each solution condition was characterized by attenuated total reflection Fourier transform infrared spectroscopy. It was revealed that only the solution exchange procedure induced the beta-sheet-like adsorbed structure of NIPAAm in which the double bonds of neighboring NIPAAm monomers were closely located, which should have resulted in effective polymerization. 相似文献
8.
V. V. A. Fernandez J. Aguilar J. F. A. Soltero F. J. Moscoso-Sánchez J. C. Sánchez-Díaz 《高分子科学杂志,A辑:纯化学与应用化学》2016,53(3):152-159
Here we report the preparation and characterization of nanostructured thermo-responsive poly(acrylamide) (PAM)-based hydrogels. The addition of slightly crosslinked poly(N-isopropylacrylamide) (PNIPA) nanogels to AM reactive aqueous solution produces nanostructured hydrogels that exhibit a volume phase transition temperature (TVPT). Their swelling kinetics, TVPT's and mechanical properties at the equilibrium-swollen state (Heq) are investigated as a function of the concentration of PNIPA nanogels in the nanostructured hydrogels. Nanostructured hydrogels with PNIPA nanogels/AM mass ratios of 20/80 and above exhibit higher Heq and longer time to reach the equilibrium swelling than those of the conventional PAM hydrogels. However, the PNIPA nanogels possess thermo-responsive character missing in conventional PAM hydrogels. The TVPT of nanostructured hydrogels depends on PNIPA nanogel content but their elastic and Young moduli are larger than those of conventional hydrogels at similar swelling ratios. Swelling kinetics, TVPT, and mechanical properties are explained in terms of the controlled in-homogeneities introduced by the PNIPA nanogels during the polymerization. 相似文献
9.
A fluorocarbon-modified poly(N-isopropylacrylamide) has been synthesized by copolymerization of N-isopropyl acrylamide with a small amount of acrylate or methacrylate containing a perfluoroalkyl group. It was found that the hydrophilicity of macromolecular backbone is an important factor to the solution properties of the copolymers and that hydrophobic association between fluorocarbon groups is stronger than that between the corresponding hydrocarbon analogies. The viscosity of some of the copolymer solutions was very sensitive to temperature. It was dilatant at higher fluorocarbon comonomer content ( > 0.20-1.0 mol%) and was Newtonian at very low fluorocarbon comonomer content (0.03-0.2 mol% ) . Evidence for hydrophobic association of the fluorocarbon groups was obtained from the effects of adding Nad and surfactants on the solution viscosity. The LC-ST properties of these copolymers were studied by DSC method and this was also found to be consistent with hydrophobic association between the fluorocarbo 相似文献
10.
Suárez IJ Fernández-Nieves A Márquez M 《The journal of physical chemistry. B》2006,110(51):25729-25733
We synthesize poly(N-isopropylacrylamide) (PNIPAM) gels with different sizes in the micrometer scale by a slight variation of a recent emulsion polymerization method (ref 1). The procedure is different than that typically used for obtaining macroscopic PNIPAM hydrogels. The resultant minigel suspension is polydisperse thus allowing the swelling kinetics for different gel sizes to be studied; we do so at temperatures below the volume-transition temperature by wetting with water previously dried particles. The resultant swelling is followed by optical video microscopy. We find that the characteristic swelling time scales with the inverse of the particle dimension squared, in agreement with theoretical predictions (ref 2). The proportionality constant is the network diffusion coefficient D, which for the minigels under consideration appears to be in between that of PNIPAM macrogels and the self-diffusion coefficient of water. 相似文献
11.
Friction between a polymer network of poly(N-isopropylacrylamide) gels and solvent water was investigated. The gel was mechanically constrained in a glass capillary at gelation, and hydrostatic pressure was directly applied to the cross section of the cylinder. The temperature dependence of the flow velocity was extensively measured in the vicinity of the transition temperature for gels with different lengths, l(0), at gelation. As the temperature increased, the friction slightly decreased at the transition point and increased rapidly in the collapsed phase. Although the flow velocity depended on l(0), the friction in the vicinity of the transition point was well scaled by l(0) based on the Hagen-Poiseuille equation for the flux of water flow in a capillary. The results suggested that the assumption that the gel is a bundle of microcapillaries was applicable to the water flow through the hydrogel, which was largely deformed not only by the pressure applied to the solvent but also by the shrinking force caused by the temperature increment. Macroscopic deformation did not affect the friction between the three-dimensional polymer network and water. 相似文献
12.
Electrophoretic mobility and aggregation in suspensions of three types of microspheres (Ms 1, Ms 2 and Ms 3) are studied at different pH, ionic strengths and temperatures of the medium. Here Ms 1 is a core particle composed of poly(N-isopropylacrylamide-co-styrene). Ms 2 is a core-shell microsphere consisting of Ms 1 as the particle core covered with a surface layer of poly(N-isopropylacrylamide) hydrogel. Ms 3 is also a core-shell microsphere composed of MS-1 covered with a surface layer of poly(N-isopropylacrylamide-co-acrylic acid) hydrogel. The charge density zN and the softness parameter 1/λ of the microspheres were obtained from the electrophoretic mobility data on the basis of an electrokinetic theory of soft particles. It is shown that when zN is large, suspensions of microspheres are always stable, showing no aggregation. When zN is small, the suspensions are stable for large 1/λ but show strong aggregation for small 1/λ. 相似文献
13.
14.
Hydrogels undergo reversible and discontinuous volume changes in response to variation of solution conditions such as solvent composition, temperature, salt concentration, and pH. In this contribution we focus our attention on the experimental and theoretical investigation of these swelling equilibria of aqueous cross-linked poly (N-isopropylacrylamide) solutions as well as on the connected demixing behavior of the linear polymer dissolved in water. For the experimental study of the (liquid + liquid) equilibrium an alternative method based on refractive index measurements is suggested. In order to calculate the swelling behavior a model combining an expression for the Gibbs free energy of mixing with an expression for the elastic network is applied. As a model for the Gibbs free energy of mixing the UNIQUAC-approach and the Koningsveld–Kleintjens model are used. For the elastic network contribution again two different theories, namely the phantom network theory and the affine network theory, were applied. Whereas the type of network theory has only a small influence on the calculation results, the Gibbs free energy of mixing has a large impact. Using the UNIQUAC-approach the swelling equilibria can be correlated close to the experimental data, however, this model predicts a homogeneous mixture for linear polymer chains in water. In contrast to this situation the Koningsveld–Kleintjens model does a good job in calculating the swelling equilibria as well as the demixing curve, however, the adjustable parameter must be changed slightly. 相似文献
15.
Drying dissipative patterns of the linear-type thermosensitive homopolymer poly(N-isopropylacrylamide) lpNIPAm in deionized aqueous solution and suspension were observed on a cover glass, a watch glass, and a Petri glass dish at 22 and 50 °C, respectively. The size and ζ potential of the globule aggregates of lpNIPAm at 47.5 °C were 140 nm in diameter and ?22 mV from the electrophoretic light-scattering measurements. A single broad ring formed in the inner region (on a cover glass and a watch glass) and near the outside edge (in a glass dish) in the macroscopic drying pattern at 22 °C. On the other hand, two to three kinds of broad rings were observed at the outside edge and inner region at 50 °C. Microscopic drying structures of ordered rings, flickering ordered spoke-lines, and net structures of the agglomerated particles were observed. Formation of the similar-sized agglomerates and their ordered arrays were observed during the course of dryness. These results of lpNIPAm at 50 °C are quite similar to the agglomeration and the ordering of the thermosensitive gel spheres of poly(N-isopropylacrylamide), pNIPAm. The surface structures of the similar-sized agglomerates of lpNIPAm will be similar to those of pNIPAm gel spheres, since the chemical components of the homopolymers and the gels are almost the same. The role of the electrical double layers around the agglomerates and their interaction with the substrates are important for the ordering. Dendritic large aggregates (from 50 to 600 μm in size) formed in the presence of sodium chloride. 相似文献
16.
V. V. A. Fernández J. Aguilar F. Becerra J. C. Sánchez-Díaz J. F. A. Soltero P. Ortega-Gudiño E. Hernandez F. Bautista J. E. Puig 《Colloid and polymer science》2013,291(8):1829-1842
The thermoresponsive behavior and mechanical properties of nanostructured hydrogels, which consist of poly(acrylamide) nanoparticles embedded in a cross-linked poly(N-isopropylacrylamide) hydrogel matrix, are reported here. Nanostructured hydrogels exhibit a tuned volume phase transition temperature (T VPT), which varies with nanoparticle content in the range from 32 up to 39–40 °C. Moreover, larger equilibrium water uptake, faster swelling and de-swelling rates, and larger equilibrium swelling at 25 °C were obtained with nanostructured hydrogels compared with those of conventional ones. Elastic and Young’s moduli were larger than those of conventional hydrogels at similar swelling ratios. The tuned T VPT and the de-swelling rate were predicted with a modified Flory–Rehner equation coupled with a mixing rule that considers the contribution of both polymers. These behaviors are explained by a combination of hydrophilic/hydrophobic interactions and by the controlled inhomogeneities (nanoparticles) introduced by the method of synthesis. 相似文献
17.
Noskov BA Akentiev AV Bilibin AY Grigoriev DO Loglio G Zorin IM Miller R 《Langmuir : the ACS journal of surfaces and colloids》2004,20(22):9669-9676
The dynamic surface elasticity of aqueous solutions of poly(N-isopropylacrylamide) (pNIPAM) has been measured by the oscillating barrier and capillary wave methods as a function of time and concentration. While the real and imaginary parts of the surface elasticity almost did not change with the concentration, their kinetic dependencies proved to be nonmonotonic. Simultaneous measurements of the film thickness and adsorbed amount by null-ellipsometry showed that the pNIPAM adsorption can be divided into two steps corresponding to the formation of a concentrated narrow region close to the air phase and a region of tails and loops protruding into the bulk liquid. The local maximum of the elasticity can be observed in the course of the first step when the adsorbed macromolecules do not form long loops and tails. The results are in agreement with recent data on the nonequilibrium surface properties of solutions of other nonionic homopolymers and the theory of dilational surface viscoelasticity. 相似文献
18.
Callewaert M Grandfils Ch Boulangé-Petermann L Rouxhet PG 《Journal of colloid and interface science》2004,276(2):299-305
The adsorption of poly(N-isopropylacrylamide) (PNIPAAM), a well known thermosensitive polymer, on glass was investigated by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The polymer was dissolved in water at low (0.02 g/L) and high (2 g/L) concentration and the tested temperatures were below (25 degrees C) and above (50 degrees C) the lower critical solubility temperature (LCST). Whatever the conditions, a smooth layer of adsorbed molecules spread along the surface was observed. The thickness was about twice higher for high concentration compared to low concentration. The cohesion in the adsorbed layer, as revealed by scraping tests performed by AFM, was higher above the LCST than below the LCST. On top of this adsorbed layer, single-chain coils, globules, or aggregates were present, depending on concentration and temperature. The observation of these additional adsorbed entities was poorly reproducible, presumably due to the lack of shear control upon rinsing. These results emphasize the importance of the characterization of surface morphology to interpret amounts of adsorbed polymers. 相似文献
19.
The electrophoretic mobility of a poly(N-isopropylacrylamide) microgel containing carboxylic groups has been measured as a function of the ionic strength, between
0.1 and 100 mM NaCl, over the temperature range 2545 ∘C. The mobility data obtained have been evaluated using different models, including the porous-sphere, the soft-plate and
the soft-sphere models as well as the hard-sphere model developed by Henry and later refined by O'Brien and White. The “porous”
or “soft” behaviour is evident at lower temperatures, whereas at higher temperatures none of the models can fully explain
the observed behaviour. It is suggested that the discrepancies at higher temperatures can be partly ascribed to the neglect
of the relaxation effect in the “soft” models.
Received: 30 June 1999/Accepted in revised form: 12 October 1999 相似文献
20.
The viscosity of dilute aqueous dispersions of poly(N-isopropylacrylamide) microgel particles is measured by capillary viscometry. The viscosity increases with particle mass fraction and on reducing temperature, particularly below the volume phase transition temperature (VPTT) of 32 °C. Converting the particle loading to volume fraction via the change in hydrodynamic size, the slope of the viscosity-volume fraction graph exhibits an increasing value beyond that for the equivalent effective hard-sphere size as the particles swell. This increase is due to the porosity of the particles. Two microgel samples of different collapsed size (124 and 59 nm at 50 °C) are investigated and the deviation from hard-sphere behavior is greater for the smaller particles. 相似文献