首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper presents the first application of mammal tooth enamel carbonate stable isotope analysis for the purpose of investigating late Pleistocene–early Holocene environmental change in an Australian archaeological context. Stable carbon (δ13C) and oxygen (δ18O) isotope ratios were analyzed from archaeological and modern spectacled hare wallaby (Lagorchestes conspicillatus) and hill kangaroo (Osphranter robustus) tooth enamel carbonates from Boodie Cave on Barrow Island in Western Australia. δ18O results track the dynamic paleoecological history at Boodie Cave including a clear shift towards increasing aridity preceding the onset of the Last Glacial Maximum and a period of increased humidity in the early to mid-Holocene. Enamel δ13C reflects divergent species feeding ecology and may imply a long-term shift toward increasing diversity in vegetation structure. This study contributes new data to the carbonate-isotope record for Australian fauna and demonstrates the significant potential of stable isotope based ecological investigations for tracking paleoenvironment change to inter-strata resolution.  相似文献   

2.
Summary New cobalt(III) complexes of general formula [Co(AA)(bigH)2 ]X3 and [Co(amidinourea)(MAUH)2 ]X3 where AA = amidinourea,N-phenylsalicylideneimine, bigH = biguanide, MAUH =O-methyl-l-amidinourea, X = 0.5 [SO4]2–, CI, Br or 0.33 [Co(NO2)6 ]3– have been synthesized and characterized. Conductance measurements (aqueous solution) show [Co(amidinourea)(bigH)2]Cl3 and [Co(N-phem,lsalicylideneimine)(bigH)2]CI3 to be triunivalent.Author to whom correspondence should be addressed.  相似文献   

3.
Human tooth enamel provides a nearly permanent and chronological record of an individuals nutritional status and anthropogenic trace metal exposure during development; it might thus provide an excellent bio archive. We investigated the micro-spatial distribution of trace metals (Cu, Fe, Mg, Sr, Pb, and Zn) in 196×339 m2 raster pattern areas (6.6×104 m2) in a deciduous tooth using laser ablation-inductively coupled plasma-mass spectrometry (LA–ICP–MS). Ablated areas include prenatal and postnatal enamel, the neonatal line, the dentine–enamel junction (DEJ), dentine, and the dentine–pulp junction. Topographic variations in the surface elemental distribution of lead, zinc, strontium, and iron intensities in a deciduous tooth revealed heterogeneous distribution within and among regions. 43Ca normalized elemental intensities showed the following order: Sr>Mg>>Zn>Pb>Fe>Cu. Elevated zinc and lead levels were present in the dental pulp region and at the neonatal line. This study demonstrates the ability of LA–ICP–MS to provide unique elemental distribution information in micro spatial areas of dental hard tissues. Elemental distribution plots could be useful in decoding nutrition and pollution information embedded in their bio apatite structure.Presented in part at the 2002 Winter Conference on Plasma Spectrochemistry, Scottsdale, AZ, January 6–12, 2002. The poster was selected as an outstanding poster presentation.  相似文献   

4.
The objective of this research was to investigate nanoindentation-induced residual stresses in human enamel using Raman microspectroscopy and establish if this approach can be used as a stress meter. Healthy human premolars and sintered hydroxyapatite samples were embedded, cut, and the surfaces were polished finely with a 0.05 μm polishing paste before Berkovich and spherical indentations were made with a force of 100 mN. Spectra were collected using a Renishaw Raman InVia reflex microscope equipped with an air-cooled charge-coupled device (CCD) camera. Sample excitation was achieved using either an argon ion laser emitting at 514.5-nm or a NIR diode laser emitting at 830-nm. The residual micro stresses within and surrounding the indentation impressions were monitored by mapping the position of the ν1(PO4) band of (crystalline) hydroxyapatite. The Raman maps coincided well with the optical micrographs of the samples. Despite the presence of a fluorescence background from the organic component of human enamel, spectra collected using 514.5-nm excitation exhibited more significant shifts in the position of the ν1(PO4) band than spectra collected using 830-nm excitation. This implies that the former excitation may be a more appropriate excitation for stress detection. It was concluded that Raman microspectroscopy provides a novel high-resolution and non-destructive method for exploring the role of microstructure on the residual stress distribution within natural biocomposites. Figure Stress maps of nanoindentation impressions on both human enamel and hydroxyapatite disk via Raman Microspectroscopy  相似文献   

5.
The geometry of a series of carbon iodides have been determined, CI4 by gas-phase electron diffraction and CI n (n = 1–4) and C2I2n (n = 1–3) by high-level quantum chemical calulations. The bond length of the tetrahedral CI4 molecule from electron diffraction is (r g):2.157(10) Å. The indication of about 20% I2 in the vapor suggests partial decomposition and it has been thoroughly investigated what other carbon iodide species might be present beside CI4. There is no appreciable amount of either of the dimeric species in the vapor phase, in spite of the suggestion from thermodynamics. On the other hand, the electron diffraction data are compatible with the presence of about 18% of either of the monomeric free radicals, CI3 or CI2, beside CI4 and I2. Possible reasons for these observations are discussed. Our correlated level computations, in agreement with other high level computations, found the singlet 1A1 state to be the ground state for CI2. This is in contrast with a recent photoelectron spectroscopic study according to which the triplet state is the ground state though with a large margin of error (1 ± 3 kcal/mol energy difference). The computed singlet-triplet separation strongly depends on the level of the computation, but it is at least 9 kcal/mol. Geometrical parameters, singlet-triplet separations, and dipole moments have been calculated for the CX2 series (X = F, Cl, Br, I, H) and their variations are discussed. The thermodynamic stability of different carbon iodide species has also been investigated.  相似文献   

6.
Zinc–aluminum–carbonate–layered double hydroxides (ZnAl–CO3–LDHs), loaded with magnetic substrates (Fe3O4), were prepared for sustained drug-targeting delivery. From the X-ray diffraction results, it was found that the magnetic substrates were successfully incorporated with LDHs and highly dispersed in the hydrotalcite structure. After intercalation with an antibiotic drug (amoxicillin) by using a calcinations–reconstruction method, the basal spacing of layered double hydroxides increased from 7.51 Å to 12.35 Å, indicating that amoxicillin was successfully intercalated into the interlay space of LDHs as a monolayer. Furthermore, in vitro drug release experiments in pH 7.4 phosphate buffer solution (PBS) showed sustained release profiles with amoxicillin as a model drug. Magnetic measurements revealed that the composite possessed paramagnetic properties at room temperature.  相似文献   

7.
The nanocomposites of magnesium–aluminium–carbonate–layered double hydroxides (Mg–Al–CO3–LDHs) and ZnO nanorods were prepared via a homogeneous precipitation process. The presence of ZnO nanorods made the calcined Mg–Al–CO3–LDHs, the strong adsorptive adsorbents for anions, have a photocatalytic activity. Both Mg–Al–CO3–LDHs and the nanocomposites with various ZnO/Mg–Al–CO3–LDHs mass ratios from 0.5:1 to 3:1 were characterized by X-ray diffraction, transmission electron microscope and UV–vis diffuse reflectance spectra. The nanocomposites quickly adsorbed the anionic dyes such as acid red G (ARG) without the light illumination, and the adsorbed dyes on the recovered nanocomposites were then degraded in a separated photocatalytic reactor. The adsorption ability of the nanocomposites and their photocatalytic activities for the removal of ARG were evaluated by the Fourier transform infrared spectra and UV–vis extinction spectra. The sample at 3:1 ZnO/Mg–Al–CO3–LDHs mass ratio was shown to have higher photocatalytic efficiencies.  相似文献   

8.
Europium doped hydroxyapatite (Eu:HAp) nanosized particles with multiform morphologies have been successfully prepared via a simple microemulsion-mediated process assisted with microwave heating. The physicochemical properties of the samples were well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) spectra, and the kinetic decays, respectively. The results reveal that the obtained Eu:HAp particles are well assigned to the hexagonal lattice structure of the hydroxyapatite phase. Additionally, it is found that samples exhibit uniform morphologies which can be controlled by altering the pH values. Furthermore, the samples show the characteristic 5D07F1–4 emission lines of Eu3+ excited by UV radiation.  相似文献   

9.
In this study, we examined the characterization of Prussian blue deposited onto p-Si(100). A cyclic voltammetry analysis was carried out under illumination showing quasi-reversibility responses of high and low-spin iron centres in the deposit. Optical measurements were done, where XRD analysis allowed to determine crystallinity while EDS analysis indicated that there is influence in the number of cycles on the film composition. Reflectance measurements confirm the coloration observed in the films. However a Kubelka–Munk analysis demonstrates the presence of blue greenish coloration which is an indication of a mix between Prussian blue and Berlin green films. Finally, this research is oriented to construct electrochemical storage devices which can be in situ loaded by the photovoltaic action of the semiconductor base material-doped silicon..  相似文献   

10.
Two non-stoichiometric hydroxyapatites (n-HA) with Ca/P molar ratios of 1.50 and 1.58 and one stoichiometric hydroxyapatite (s-HA) with Ca/P = 1.67 were prepared from chemically pure CaHPO4·2H2O and KOH. After sintering at 1050 °C for 4 h, n-HA with Ca/P = 1.50 was transformed into -Ca3(PO4)2, n-HA with Ca/P = 1.58 was converted to diphase calcium phosphate (DCP), while s-HA underwent no chemical transformations. The sintered and unsintered samples of hydroxyapatite were studied by IR spectroscopy, chemical analysis, and X-ray diffraction analysis. The crystallite dimensions were calculated, and a model for the DCP structure was proposed. The mechanism of the solid-state n-HA to DCP conversion was proposed on the basis of this model and published values of the volume diffusion coefficients of the OH, Ca2+, and PO4 3– ions at 1000 °C.  相似文献   

11.
Chiral bicyclic α‐amino acid (R,R)‐Ab5,6=c with stereogenic centers at the γ‐position of fused‐ring junctions, and its enantiomer (S,S)‐Ab5,6=c, were synthesized. The CD spectra of (R,R)‐Ab5,6=c oligomers indicated that the (R,R)‐Ab5,6=c hexapeptide formed a mixture of right‐handed (P)‐ and left‐handed (M)‐310‐helices, while, in the (R,R)‐Ab5,6=c nonapeptide, a right‐handed (P)‐310‐helix slightly dominated over the (M)‐helix. X‐Ray crystallographic analyses of (S,S)‐tripeptide and (R,R)‐hexapeptide revealed that both the tripeptide and hexapeptide formed a mixture of (P)‐ and (M)‐310‐helices, respectively. These results indicated that the side‐chain environments around the stereogenic centers are particularly important to control the helical‐screw handedness of foldamers.  相似文献   

12.
This work reports on a novel nanosized calcium carbonate–chitosan (nanoCaCO3–chi) composite film fabricated by a one-step co-electrodeposition method. The generated nanoCaCO3-based matrix possessed a three-dimensional (3D) porous, network-like structure, providing a favorable and biocompatible microenvironment to immobilize enzyme. By using such a composite film as enzyme immobilization matrix, a highly sensitive and stable acetylcholinesterase (AChE) sensor was achieved for determination of methyl parathion as a model of organophosphate pesticides (OPs) compounds. The inhibition of methyl parathion was proportional to its concentration ranging from 0.005–0.2 to 0.75–3.75 μg mL−1. The detection limit was found to be as low as 1 ng mL−1 (S/N = 3). The designed biosensor exhibited good reproducibility and acceptable stability.  相似文献   

13.
《Analytical letters》2012,45(9):1787-1798
ABSTRACT

A novel immunoassay of methyltestosterone (MT) in serum is developed. We synthesized the antigen of MT (AgMT) by covalently bonding it to BSA and raised its antibody (AbMT) from rabbit. AbMT was conjugated to poly-N-isopropylacrylamide (p-NIPAAm) to form AbMT bound thermally reversible hydrogel (p-NIPAAm-AbMT). A competitive immunoassay method based on the competition of fluorescein isothiocyanate (FITC) labeled MT antigen (FITC-AgMT) and MT with limited amounts of p-NIPAAm-AbMT was established. The separation in the assay process was achieved by precipitation of the immuno-complex above its critical solution temperature. The detection limit of MT is 50 ng/ml. The recoveries of MT in human serum are above 93%.  相似文献   

14.
The paramagnetic radicals induced by radiation in dental enamel are very important because they can be related to the crystalline structure of hydroxyapatite. The R-value, that is, the ratio of the amplitude of the lines of the EPR signal due to radiation, is a measure of the degree of microcrystal alignment in human tooth enamel. The aim of this study is to underline the importance of a correct evaluation of the R-value, by using the current method to increase reproducibility in EPR spectroscopy of tooth enamel. Data with and without correction show a significant difference and, consequently, they give rise to a different valuation of microcrystal alignment.  相似文献   

15.
Indium-Na2Ti6O13 doped semiconductors were prepared by the sol–gel method using titanium and sodium alkoxides as precursors. The gelled samples were annealed at 700 °C for 4, 6, and 8 h, and then characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and UV–Vis diffused reflectance spectroscopy (DRS). XRD patterns of the samples show the formation of the Na2Ti6O13 phase, whose crystallinity depends on the annealing time. The band gap calculated from the UV–Vis Kubelka–Munk function report similar values (3.2–3.4 eV) for all of the samples annealed at different times. SEM observations of the semiconductors showed microfiber bundle morphologies of about 5 μm. Meanwhile, by EDS analysis, indium oxide highly homogeneously dispersed on the hexatitanate surface was identified. The evaluation of the In-Na2Ti6O13 semiconductors in the 2,4-dichlorophenoxyacetic acid (2,4-D) photodecomposition using ultraviolet light (λ = 254 nm) irradiation show that the photoactivity of the solids depends on the annealing time applied to the samples. The role of indium oxide is related to the indium oxide dispersed on the surface of the titanate diminishing the electron-hole recombination rate.  相似文献   

16.
Conditions for hydroxyapatite (HAP) synthesis in aqueous solutions by hydrolysis of α-Ca3(PO4)2 were studied. Temperature exerts a substantial effect on the rate of α-Ca3(PO4)2 hydrolysis and also changes the morphology of the reaction products. At 40 °C, the plate-like intersecting (perpendicular to the surface of the initial particles) crystals of HAP grow. Their maximum size after the 24-h hydrolysis is 1–2 µm. Needle like HAP crystals are formed upon boiling of the suspension. The morphology observed for the HAP particles agrees well with the conclusions obtained by analysis of the kinetics of tricalcium phosphate hydrolysis.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 78–85, January, 2005.  相似文献   

17.
The sol-gel prepared titania (TiO2) has recently been demonstrated with a promising bioactivity [1]. It forms a chemical bond with the living bone in the body, although the bonding is not very strong. The present study is intended to improve the bone-bonding ability of the titania gel. The goal is achieved by impregnating the titania with hydroxyapatite (Ca10(PO4)6(OH)2). The processing route includes the following steps: (1) the titania sol solution was prepared; (2) the solution was mixed with fine hydroxyapatite (HA) powders; (3) the mixture was used to produce a coating on a commercial pure titanium (c.p. Ti) or Ti6A14V plate by a dip coating technique; (4) the coating was fired at 400–600°C. The resulting coating is a composite consisting of hydroxyapatite embedded in the matrix of the titania gel. Such HA-TiO2 composite coating is capable of inducing the hydroxyapatite precipitation from a simulated body fluid. When implanted in femurs of goat, the composite coating shows a bonding with bone. Its bone-bonding strength is twice as high as that of the pure titania gel coating. The results indicate that impregnating with hydroxyapatite is a promising way to increase the bioactivity of the titania gel.  相似文献   

18.
Stained glass windows incorporating dark blue and purple enamel paint layers are in some cases subject to severe degradation while others from the same period survived the ravages of time. A series of dark blue, green–blue and purple enamel glass paints from the same region (Northwestern Europe) and from the same period (16–early 20th centuries) has been studied by means of a combination of microscopic X-ray fluorescence analysis, electron probe micro analysis and transmission electron microscopy with the aim of better understanding the causes of the degradation. The chemical composition of the enamels diverges from the average chemical composition of window glass. Some of the compositions appear to be unstable, for example those with a high concentration of K2O and a low content of CaO and PbO. In other cases, the deterioration of the paint layers was caused by the less than optimal vitrification of the enamel during the firing process. Recipes and chemical compositions indicate that glassmakers of the 16–17th century had full control over the color of the enamel glass paints they made. They mainly used three types of coloring agents, based on Co (dark blue), Mn (purple) and Cu (light-blue or green–blue) as coloring elements. Blue–purple enamel paints were obtained by mixing two different coloring agents. The coloring agent for red–purple enamel, introduced during the 19th century, was colloidal gold embedded in grains of lead glass.  相似文献   

19.
A very sensitive and selective electrothermal atomization-atomic absorption Spectrophotometric (ETA-AAS) matrix-modified method for the determination of micro- and submicrogram amounts (0–25 μ g−1 molybdenum) in whole human one-rooted teeth has been developed. Hydrazine sulfate, (NH2)2 · H2SO4, which has been used as a matrix modifying reagent (MMR) is found to be very influential in removing matrix interference effects such as calcium which is present in hydroxy apatite (the main mineral constituent of tooth), at pH 2.0–2.2. Beer's law is obeyed over the range 0–1.5 ng molybdenum 5/μl injected solution. The absolute sensitivity and detection limit of the method are respectively 6.46 and 1.32 pg molybdenum/5 μl injected sample solution. The recovery percentage and RSD% are also determined. Compared to the neutron activation method, the proposed method is rapid, more available, and less expensive and requires no grinding of the tooth with metals, mortar, or mills. It is more sensitive and simpler than flame techniques. Background correction is not necessary. No separation or preconcentration of molybdenum is required. The method has been applied for the determination of molybdenum in teeth taken from representative districts of Baghdad.  相似文献   

20.
Sol–gel chemistry of SiO2(1 – x)TiO2(x) involving the partial pre-hydrolysis of tetraethoxysilane (TEOS) and subsequent reaction with titanium isopropoxide has been used to produce materials of high area and variable absorption edge in the UV-visible spectrum. As x increases so the total surface area of these phases unexpectedly passed through a maximum, but the UV-vis cut off moved to greater wavelength. On the other hand, X-ray photoelectron spectroscopy (XPS) measured O1s binding energies and temperatures of maximum rates of reduction (Tmax) that were intermediate between those of pure SiO2 and TiO2. Both suggested that SiO2(1 – x)TiO2(x) samples were an intimate mixture of Si4 + and Ti4 + in the sol–gel matrix. Perfluoroalkylsilane (PFAS) was strongly adsorbed on this sol–gel coating making it strongly hydrophobic. This mode of modification was better than PFAS incorporation at the start of the sol–gel synthesis. Such sol–gel chemistry might in the future be optimised for water-repelling surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号