首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanosized copper aluminate (CuAl2O4) spinel particles have been prepared by a precursor approach with the aid of ultrasound radiation. Mono-phasic copper aluminate with a crystallite diameter of 17 nm along the (3 1 1) plane was formed when the products were synthesized using Cu(NO3)2·6H2O and Al(NO3)3·9H2O as starting materials, with urea as a precipitation agent at a concentration of 9 M. The reaction was carried out under ultrasound irradiation at 80 °C for 4 h and a calcination temperature of 900 °C for 6 h. The synthesized copper aluminate particles and the effect of different processing conditions such as the copper source, precipitation agents, sonochemical reaction time, calcination temperature and time were analyzed and characterized by the techniques of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transformation infrared spectroscopy (FT–IR).  相似文献   

2.
《Ultrasonics sonochemistry》2014,21(6):1933-1938
In this study, manganese oxide (MnO2) nanoparticles were synthesized by sonochemical reduction of KMnO4 using polyethylene glycol (PEG) as a reducing agent as well as structure directing agent under room temperature in short duration of time and characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), Transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) analysis. A supercapacitor device constructed using the ultrasonically-synthesized MnO2 nanoparticles showed maximum specific capacitance (SC) of 282 Fg−1 in the presence of 1 M Ca(NO3)2 as an electrolyte at a current density of 0.5 mA cm−2 in the potential range from 0.0 to 1.0 V and about 78% of specific capacitance was retained even after 1000 cycles indicating its high electrochemical stability.  相似文献   

3.
The transition metal-doped spinel cathode materials, LiM0.5Mn1.5O4 (M=Ni. Co, Cr) were prepared by solid-state reaction. The structure and morphology of the samples were investigated by X-ray diffraction, Rietveld refinement and scanning electron microscopy (SEM). The diffraction peaks of all the samples corresponded to a single phase of cubic spinel structure with a space group Fd3m. Field-emission SEM shows octahedron like shapes and the primary particles size was between 500 nm and 2 μm. Oxidation states of Ni, Co and Cr were found to be 2+, 2+ and 3+ as revealed by X-ray photoelectron spectroscopy. During discharging, LiNi0.5Mn1.5O4 and LiCo0.5Mn1.5O4 sample shows more than 130 mAh/g between 3.5 and 5.2 V at a current density of 0.65 mA/cm2 and well developed plateau around 5 V, respectively.  相似文献   

4.
Brushite was synthesized by precipitation of calcium chloride (CaCl2) and sodium phosphate monobasic (Na2HPO4) dried in vacuum and monetite was obtained from this brushite by sonication with a frequency of 90 kHz at 500 W for 90 min. Monetite itself was also transformed in Ca(H2PO4)2·H2O, monocalcium phosphate monohydrate (MCPM), by sonication with a frequency of 90 kHz at 500 W for 60 min followed by lyophilization. The MCPM was sonicated and lyophilized by three times more until reach over 240 min, but any other phase transformation was observed. All these phase transformations were analyzed by X-ray diffraction (XRD) and infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicated a grain size of about 200 nm in all the samples. The morphology observed was a corn-flake-like grain for brushite, a pseudo-needle-like grains for monetite, and lamellar-like grains for MCPM.  相似文献   

5.
《Ultrasonics sonochemistry》2014,21(5):1707-1713
A novel template-free sonochemical synthesis technique was used to prepare NiO microspheres combined with calcination of NiO2.45C0.74N0.25H2.90 precursor at 500 °C. The NiO microspheres samples were systematically investigated by the thermograviometric/differential scanning calorimetry (TG/DSC), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), fourier-transformed infrared spectroscopy (FT-IR), Brunnauer–Emmett–Teller (BET) nitrogen adsorption–desorption isotherms, laser particle size analyzer, and ultraviolet–visible spectroscopy (UV–Vis). The morphology of the precursor was retained even after the calcination process, and exhibited hierarchically porous sphericity. The morphology changed over the ultrasonic radiation time, and the shortest reaction time was 70 min, which was much less than 4 h for the mechanical stirring process. The mechanical stirring was difficult to form the complete hierarchically porous microsphere structure. The BET specific surface area and the median diameter of the hierarchically porous NiO microspheres were 103.20 m2/g and 3.436 μm, respectively. The synthesized NiO microspheres were mesoporous materials with a high fraction of macropores. The pores were resulted from the intergranular accumulation. The ultraviolet absorption spectrum showed a broad emission at the center of 475 nm, and the band gap energy was estimated to be 3.63 eV.  相似文献   

6.
CuFe2O4 particles were successfully engineered by a facile sol-gel method. The synthesized products were characterized physically by X-ray diffraction (XRD), scanning electron microscopy (SEM). Besides, the effects of the sintering temperature and the molar ration of citric acid/the total metal cations (CA/MC) on their infrared radiant properties were investigated at the wavelength of 3–5 μm. The highest infrared emission value ca. 0.911 was obtained when the test temperature was conducted at 800 °C, indicating its potential application in infrared heating, infrared coating and drying fields.  相似文献   

7.
Nano-structure of a new 0D Pb(II) coordination supramolecular compound, [Pb4(8-Quin)6](ClO4)2(1), L = 8-HQuin = 8-hydroxyquinolin ligand has been synthesized by use of a sonochemical process and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR) and elemental analyses. The structure of compound 1 was determined by single-crystal X-ray diffraction. The single crystal X-ray data of compound 1 implies that the Pb+2 ions are five coordinated. Each lead atom is coordinated to nitrogen and oxygen atoms of 8-hydroxyquinolin ligand. Topological analysis shows that the compound 1 is 1,2,3,4,4M12-1net. Nanoparticles of lead(II) oxide have been prepared by calcination of lead(II) coordination polymer at 500 °C that were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD) and IR spectroscopy.  相似文献   

8.
The nitrogen (N) doped Ti4O7 photocatalyst was prepared from urea as a nitrogen source by a microwave method. The resulting photocatalyst was characterized by X-ray diffraction (XRD), Field Emission Scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), UV–visible diffuse reflectance spectroscopy (UV–Vis DRS) and UV–vis spectroscopy (UV–Vis). 0.1 M N doped Ti4O7 photocatalyst exhibited methylene blue decomposition efficiency of 100% which was prepared by microwave treatment for above 30 min. Rate constant was found to be 0.028910 min−1 in the first order kinetic.  相似文献   

9.
Cube micrometer potassium niobate (KNbO3) powder, as a high effective sonocatalyst, was prepared using hydrothermal method, and then, was characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). In order to evaluate the sonocatalytic activity of prepared KNbO3 powder, the sonocatalytic degradation of some organic dyes was studied. In addition, some influencing factors such as heat-treatment temperature and heat-treatment time on the sonocatalytic activity of prepared KNbO3 powder and catalyst added amount and ultrasonic irradiation time on the sonocatalytic degradation efficiency were examined by using UV–visible spectrophotometer and Total Organic Carbon (TOC) determination. The experimental results showed that the best sonocatalytic degradation ratio (69.23%) of organic dyes could be obtained when the conditions of 5.00 mg/L initial concentration, 1.00 g/L prepared KNbO3 powder (heat-treated at 400 °C for 60 min) added amount, 5.00 h ultrasonic irradiation (40 kHz frequency and 300 W output power), 100 mL total volume and 25–28 °C temperature were adopted. Therefore, the micrometer KNbO3 powder could be considered as an effective sonocatalyst for treating non- or low-transparent organic wastewaters.  相似文献   

10.
Nano-structured LiVPO4F/Ag composite cathode material has been successfully synthesized via a sol–gel route. The structural and physical properties, as well as the electrochemical performance of the material are compared with those of the pristine LiVPO4F. X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal that Ag particles are uniformly dispersed on the surface of LiVPO4F without destroying the crystal structure of the bulk material. An analysis of the electrochemical measurements show that the Ag-modified LiVPO4F material exhibits high discharge capacity, good cycle performance (108.5 mAh g−1 after 50th cycles at 0.1 C, 93% of initial discharge capacity) and excellent rate behavior (81.8 mAh g−1 for initial discharge capacity at 5 C). The electrochemical impedance spectroscopy (EIS) results reveal that the adding of Ag decreases the charge-transfer resistance (Rct) of LiVPO4F cathode. This study demonstrates that Ag-coating is a promising way to improve the electrochemical performance of the pristine LiVPO4F for lithium-ion batteries cathode material.  相似文献   

11.
Ternary molybdate NaCaGd1−x(MoO4)3:Er3+/Yb3+ phosphors with the proper doping concentrations of Er3+ and Yb3+ (x = Er3+ + Yb3+, Er3+ = 0, 0.05, 0.1, 0.2 and Yb3+ = 0, 0.2, 0.45) were successfully synthesized by microwave sol–gel method for the first time. Well-crystallized particles formed after heat-treatment at 900 °C for 16 h showed a fine and homogeneous morphology with particle sizes of 3–5 μm. The optical properties were examined comparatively using photoluminescence emission and Raman spectroscopy. Under excitation at 980 nm, the doped particles exhibited a strong 525-nm emission band, a weak 550-nm emission band in the green region, which correspond to the 2H11/2  4I15/2 and 4S3/2  4I15/2 transitions, and a very weak 655-nm emission band in the red region, which corresponds to the 4F9/2  4I15/2 transition. The optimal Yb3+:Er3+ ratio was obtained to be 9:1, as indicated by the composition-dependent quenching effect of Er3+ ions. The pump power dependence of upconversion emission intensity and Commission Internationale de L’Eclairage chromaticity coordinates of the phosphors were evaluated in detail.  相似文献   

12.
Nanoscale Co3O4 particles were doped into MgB2 tapes with the aim of developing superconducting wires with high-current-carrying capacity. Fe-sheathed MgB2 tapes with a mono-core were prepared using the in situ powder-in-tube (PIT) process with the addition of 0.2–1.0 mol% Co3O4. The critical temperature decreased monotonically with an increasing amount of doped Co3O4 particles for all heat-treatment temperatures from 600 to 900 °C. However, the transport critical current density (Jc) at 4.2 K varied with the heat-treatment temperatures. The Jc values in magnetic fields ranging from 7 to 12 T decreased monotonically with increasing Co3O4 doping level for a heat-treatment temperature of 600 °C. In contrast, some improvements on the Jc values of the Co3O4 doped tapes were observed in the magnetic fields below 10 T for 700 and 800 °C. Furthermore, Jc values in all the fields measured increased as the Co3O4 doping level increase from 0 to 1 mol% for 900 °C. This heat-treatment temperature dependence of the Jc values could be explained in terms of the heat-treatment temperature dependence of the irreversibility field with Co3O4 doping.  相似文献   

13.
Nano-structures of two new Pb(II) two-dimensional coordination polymers, [Pb(μ-4-pyc)(μ-NCS)(μ-H2O)]n (1) and [Pb(μ-4-pyc)(μ-N3)(μ-H2O)]n (2), 4-Hpyc = 4-pyridinecarboxylic acid were synthesized by a sonochemical method. The new nano-structures were characterized by scanning electron microscopy, X-ray powder diffraction, IR spectroscopy and elemental analyses. Compounds 1 and 2 were structurally characterized by single crystal X-ray diffraction and consist of two-dimensional polymeric units. The thermal stability of compounds 1 and 2 were studied by thermal gravimetric and differential thermal analyses and compared. Pb2(SO4)O and PbO nanoparticles were obtained by calcination of the nano-structures of compounds 1 and 2 at 600 °C, respectively.  相似文献   

14.
15.
Multiwalled carbon nanotubes (MWCNTs) and Vulcan carbon (VC) decorated with SnO2 nanoparticles were synthesized using a facile and versatile sonochemical procedure. The as-prepared nanocomposites were characterized by means of transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infra red spectroscopy. It was evidenced that SnO2 nanoparticles were uniformly distributed on both carbon surfaces, tightly decorating the MWCNTs and VC. The electrochemical performance of the nanocomposites was evaluated by cyclic voltammetry and galvanostatic charge/discharge cycling. The as-synthesized SnO2/MWCNTs nanocomposites show a higher capacity than the SnO2/VC nanocomposites. Concretely, the SnO2/MWCNTs electrodes exhibit a specific capacitance of 133.33 F g−1, whereas SnO2/VC electrodes exhibit a specific capacitance of 112.14 F g−1 measured at 0.5 mA cm−2 in 1 M Na2SO4.  相似文献   

16.
《Solid State Ionics》2006,177(9-10):869-875
The electrochemical reduction of molten Li–Na–K carbonates at 450 °C provides “quasi-spherical” carbon nanoparticles with size comprised between 40 and 80 nm (deduced from AFM measurements). XRD analyses performed after washing and heat-treatment at various temperatures have revealed the presence of graphitised and amorphous phases. The d002 values were close to the ideal one obtained for pure graphite. Raman spectroscopy has pointed out surface disordering which increases with increasing temperature of the heat-treatment. The presence of Na and Li on the surface of the carbon powder has been evidenced by SIMS. The maximum Na and Li contents were observed for carbon samples heat-treated at 400 °C. Their electrochemical performances vs. the insertion/deinsertion of lithium cations were studied in 1 M LiPF6–EC : DEC : DMC (2 : 1 : 2). The first charge–discharge cycle is characterised by a high irreversible capacity as in the case of hard-disordered carbon materials. However, the potential profile in galvanostatic mode is intermediate between that usually observed for graphite and amorphous carbon: rather continuous charge–discharge curves sloping between 1.5 and 0.3 V vs. Li / Li+, and successive phase transformations between 0.3 and 0.02 V vs. Li / Li+. The best electrochemical performances were obtained with carbon powders heat-treated at 400 °C which exhibits a reversible capacity value of 1080 mAh g 1 (composition of Li2.9C6). This sample has also both the lowest surface disordering (deduced from Raman spectroscopy), and the highest Na and Li surface contents (deduced from SIMS).  相似文献   

17.
Spinel-type manganese oxide/porous carbon (Mn3O4/C) nanocomposite powders have been simply prepared by a thermal decomposition of manganese gluconate dihydrate under an Ar gas flow at above 600 °C. The structure and texture of the Mn3O4/C nanocomposite powders are investigated by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) equipped scanning transmission electron microscopy (STEM), transmission electron microscopy (TEM), selected area-electron diffraction (SA-ED), thermogravimetric and differential thermal analysis (TG-DTA) and adsorption/desorption of N2 gas at ?196 °C. The electrochemical properties of the nanocomposite powders in 1 M KOH aqueous solution are studied, focusing on the relationship between their structures and electrochemical capacitance.In the nanocomposite powders, Mn3O4 nano particles approximately 5 nm in size are dispersed in a porous carbon matrix. The nanocomposite powders prepared at 800 °C exhibit a high specific capacitance calculated from cyclic voltammogram of 350 and 600 F g?1 at a sweep rate of 1 and 0.1 mV s?1, respectively. The influence of the heating temperature on the structure and the electrochemical properties of nanocomposite powders is also discussed.  相似文献   

18.
Double tungstate KGd1−x(WO4)2:Ho3+/Yb3+ phosphors with doping concentrations of Ho3+ and Yb3+ (x=Ho3++Yb3+, Ho3+=0.05, 0.1, 0.2 and Yb3+=0.2, 0.45) were successfully synthesized by the microwave sol–gel method, and the upconversion mechanisms were investigated in detail. The synthesized particles formed after heat-treatment at 900 °C for 16 h showed a well crystallized morphology with particle sizes of 2–5 μm. Under excitation at 980 nm, the UC intensities of KGd0.7(WO4)2:Ho0.1Yb0.2 and KGd0.5(WO4)2Ho0.05Yb0.45 particles exhibited yellow emissions based on a strong 550-nm emission band in the green region and a strong 655-nm emission band in the red region, which were assigned to the 5S2/5F45I8 and 5F55I8 transitions, respectively. The Raman spectra of the doped particles indicated the presence of strong peaks at higher frequencies of 764, 812, 904, 984, 1050, 1106, 1250 and 1340 cm−1 induced by the disorder of the [WO4]2− groups with the incorporation of the Ho3+ and Yb3+ elements into the crystal lattice or by a new phase formation.  相似文献   

19.
The present investigation describes the addition of iron (Fe) in order to improve the supercapacitive properties of MnO2 electrodes using galvanostatic mode. These amorphous worm like Fe: MnO2 electrodes are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and wettability test. The supercapacitive properties of MnO2 and Fe: MnO2 electrodes are investigated using cyclic voltammetry, chronopotentiometry and impedance techniques. It is seen that the supercapacitance increases with increase in Fe doping concentration and achieved a maximum of 173 F g?1 at 2 at% Fe doping. The maximum supercapacitance obtained is 218 F g?1 for 2 at% Fe: MnO2 electrode. This hydrous binary oxide exhibited ideal capacitive behavior with high reversibility and high pulse charge–discharge property between ?0.1 and +0.9 V/SCE in 1 M Na2SO4 electrolyte indicating a promising electrode material for electrochemical supercapacitors.  相似文献   

20.
Fe3O4/hydroxyapatite/graphene quantum dots (Fe3O4/HAP/GQDs) nanocomposite was synthesized and used as a novel magnetic adsorbent. This nanocomposite was characterized using scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and magnetization property. The Fe3O4/HAP/GQDs was applied to pre-concentrate copper residues in Thai food ingredients (so-called “Tom Yum Kung”) prior to determination by inductively coupled plasma-atomic emission spectrometry. Based on ultrasound-assisted extraction optimization, various parameters affecting the magnetic solid-phase extraction, such as solution pH, amount of magnetic nanoparticles, adsorption and desorption time, and type of elution solvent and its concentration were evaluated. Under optimal conditions, the linear range was 0.05–1500 ng mL−1 (R2 > 0.999), limit of detection was 0.58 ng mL−1, and limit of quantification was 1.94 ng mL−1. The precision, expressed as the relative standard deviation of the calibration curve slope (n = 5), for intra-day and inter-day analyses was 0.87% and 4.47%, respectively. The recovery study of Cu for real samples was ranged between 83.5% and 104.8%. This approach gave the enrichment factor of 39.2, which guarantees trace analysis of Cu residues. Therefore, Fe3O4/HAP/GQDs can be a potential and suitable candidate for the pre-concentration and separation of Cu from food samples. It can easily be reused after treatment with deionized water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号