首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
李霞  冯东海  何红燕  贾天卿  单璐繁  孙真荣  徐至展 《物理学报》2012,61(19):197801-197801
在水相合成CdTe以及CdTe/CdS核壳结构量子点基础上, 利用基于抽运-探测技术的瞬态差分透射技术研究了CdTe量子点以及不同CdS壳层厚度的CdTe/CdS量子点的最低激子能态的超快激发与弛豫动力学. 研究表明:相比于CdTe,CdTe/CdS量子点的电子空穴由于空间分离,其所需的激发时间要长于电子空穴空间重叠态所需要的激发时间.随着壳层厚度的增加, 量子点表面的钝化有效地减少了表面态相关弛豫机理,并延长相对应的弛豫时间.  相似文献   

2.
The IR reflection spectra of structures that consist of alternating layers of CdTe quantum dots and ZnTe barriers and are grown on ZnTe and CdTe/ZnTe buffer layers on GaAs(001) substrates are studied. The spectra are processed using dispersion analysis, and the parameters of the oscillators are determined. In the spectra, quantum dots manifest themselves in the form of a broad band at a frequency close to the frequency of the Fröhlich mode. It is revealed that the spectra contain features associated with the interdiffusion of the CdTe and ZnTe compounds, i.e., bands attributed to the local mode of Zn atoms in the CdTe compound and two gap modes of Cd atoms in the ZnTe compound.  相似文献   

3.
We study theoretically the time development of electronic relaxation in quantum dots. We consider the process of relaxation of the state with an electron prepared at the beginning of relaxation in the electronic ground state. We obtain a fast (in picoseconds) increase of electronic population in the excited state. Also, we consider the process of relaxation of an electron from an excited state in the dot. Here we obtain an incomplete depopulation of the electron from the excited state. We compare these results to experiments in which a fast decrease of luminescence is reported during the first period of relaxation after resonant excitation of the ground state. We estimate numerically the role of electron–LO–phonon (Fröhlich's coupling) mechanism in these processes. We show that this effect may be attributed to the influence of multiple scattering of quantum dot electrons on LO phonons. A single-electron two-energy-level quantum dot model is used to demonstrate this effect in an isolated semiconductor quantum dot.  相似文献   

4.
《Current Applied Physics》2018,18(2):267-271
We report resonant Raman scattering results of CdTe/ZnTe self-assembled quantum dot (QD) structures. Photoluminescence spectra reveal that the band gap energies of the CdTe QDs decrease with the increase of CdTe thickness from 2.0 to 3.5 monolayers, which indicates that the size of the QDs increases. When the CdTe/ZnTe QD structures are excited by non-resonant excitation, a longitudinal optical (LO) phonon response from the ZnTe barrier material is observed at 206 cm−1. In contrast, when the CdTe/ZnTe QD structures are resonantly excited near the band gap energy of the QDs, additional phonon modes emerge at 167 and 200 cm−1, while the ZnTe LO phonon response completely disappears. The 167 cm−1 mode corresponds to the LO phonon of the CdTe QDs. A spatially resolved Raman scattering from the cleaved edge of the QD sample reveals that the 200 cm−1 mode is strongly localized at the interface between the CdTe QDs and ZnTe cap layer. This phonon mode is attributed to the interface optical (IO) phonon. The analytically calculated value of the IO phonon energy using a dielectric continuum approach, assuming a spherical dot boundary, agrees well with the experimental value.  相似文献   

5.
This paper reports on the results of investigations of the lattice IR reflection spectra of ZnTe/CdTe multilayer superlattices with CdTe quantum dots grown by molecular-beam epitaxy on a GaAs substrate with a CdTe buffer layer. It is found that the lattice IR reflection spectra of the studied structures exhibit three intense bands associated with vibrational excitations in the GaAs substrate, ZnTe barriers separating the layers with CdTe quantum dots, and the CdTe buffer layer. An analysis of the reflection bands and shifts in the phonon frequencies has revealed internal elastic stresses both in the surface layer of the GaAs substrate and in the ZnTe barriers. It is established that elastic stresses undergo relaxation in the separating ZnTe layers with an increase in their thickness. An additional mode observed in the reflection spectra is explained by manifestations of ZnTe-like vibrations in the ZnCdTe alloy due to interdiffusion of Cd and Zn at the interfaces.  相似文献   

6.
Raman spectra in superlattices composed of layers of self-assembled CdTe quantum dots separated by ZnTe barriers are investigated. As the barrier thickness increases, a high-frequency shift of all peaks is observed, which is explained by a decrease in the lattice constant averaged over the volume of the entire structure. Peaks are found at a CdTe TO mode frequency of 140 cm?1 and also at 120 cm?1. The first peak is assigned to the symmetric Coulomb (interface) mode of the quantum dot material, and the low-frequency peak is assigned to the symmetric mode of the phonons captured in the quantum dot. This combination of modes in structures with quantum dots has not been observed previously.  相似文献   

7.
The temperature dependence of the integrated photoluminescence intensity of nanometer-sized ZnTe/CdTe/ZnTe quantum wells has been investigated under different excitation conditions. It has been shown that the character of thermal decay of the luminescence intensity depends on the frequency of the exciting light and, under the above-barrier excitation, strongly depends on the optical excitation power density. It has been found that an increase in the excitation intensity leads to a saturation of thermal quenching of the luminescence in the low-temperature range. The conclusion has been drawn that this behavior reflects the saturation of nonradiative recombination centers with photoexcited carriers.  相似文献   

8.
Polaron decay in n-type InAs quantum dots has been investigated using energy dependent, mid-infrared pump–probe spectroscopy. By studying samples with differing ground state to first excited state energy separations the relaxation time has been measured between 40 and 60 meV. The low-temperature decay time increases with increasing detuning between the pump energy and the optical phonon energy and is maximum (55 ps) at 56 meV. From the experimentally determined decay times we are able to extract a low-temperature optical phonon lifetime of 13 ps for InAs QDs. We find that the polaron decay time decreases by a factor of 2 at room temperature due to the reduction of the optical phonon lifetime.  相似文献   

9.
Size-dependence of optical properties and energy relaxation in CdSe/ZnS quantum dots (QDs) were investigated by two-colour femtosecond (fs) pump-probe (400/800 nm) and picosecond time-resolved photoluminescence (ps TRPL) experiments. Pump-probe measurement results show that there are two components for the excited carriers relaxation, the fast one with a time constant of several ps arises from the Auger-type recombination, which shows almost particle sizeindependence. The slow relaxation component with a time constant of several decades of ns can be clearly determined with ps TRPL spectroscopy in which the slow relaxation process shows strong particle size-dependence. The decay time constants increase from 21 to 34 ns with the decrease of particle size from 3.2 to 2.1 nm. The room-temperature decay lifetime is due to the thermal mixing of bright and dark excitons, and the size-dependence of slow relaxation process can be explained very well in terms of simple three-level model.  相似文献   

10.
Photoluminescence (PL) measurements were carried out to investigate the interband transition and the activation energy in CdTe/ZnTe double quantum dots (QDs). While the excitonic peaks corresponding to the interband transition from the ground electronic subband to the ground heavy-hole (E1-HH1) in the CdTe/ZnTe double QDs shifted to higher energy with decreasing ZnTe spacer thickness from 30 to 10 nm due to transformation from CdTe QDs to CdxZn1−xTe QDs, the peaks of the (E1-HH1) transitions shifted to lower energy with decreasing spacer thickness from 10 to 3 nm due to the tunneling effects of the electrons between CdTe double QDs. The decrease in the activation energy with decreasing ZnTe spacer thickness might originate from an increase in the number of defects in the ZnTe spacer. The present results can help improve the understanding of the interband transition and the activation energy in CdTe/ZnTe double QDs.  相似文献   

11.
We explore the pattern of size dependence of linear and non-linear optical (NLO) responses of one-electron quantum dots in two dimensions with or without anharmonicity in the confinement potential. For some fixed values of transverse magnetic field strength (ωc) and harmonic confinement potential (ω0), the influence of the size of the dot on the linear (), the first (β) and the second (γ) NLO responses of the system computed through a finite field linear variational route is analysed. Size-dependent maximization is predicted to be feasible for the quadratic hyperpolarizability.  相似文献   

12.
PbTe/CdTe量子点的光学增益   总被引:2,自引:0,他引:2       下载免费PDF全文
徐天宁  吴惠桢  斯剑霄 《物理学报》2008,57(4):2574-2581
PbTe/CdTe量子点是一类新型异系低维结构材料,实验发现具有强的室温中红外光致发光现象.为研究这一材料体系的发光特性,建立了理论模型,计算了PbTe/CdTe量子点的光学跃迁和增益.模型基于k·p包络波函数方法并考虑了PbTe能带结构的各向异性.分析了量子点光学增益与量子点尺寸、注入载流子浓度的关系.结果表明,当注入载流子浓度在(0.3—3)×1018cm-3范围时,尺寸为15—20nm的量子点可以产生 关键词: PbTe/CdTe量子点 光学增益 铅盐矿半导体  相似文献   

13.
Journal of the Korean Physical Society - We study the effects of the structure parameters of self-assembled CdTe/ZnTe quantum dots (QDs) under an electric field on the exciton binding energies due...  相似文献   

14.
A systematic variation of the exciton fine-structure splitting with quantum dot size in single quantum dots grown by metal-organic chemical vapor deposition is observed. The splitting increases from to as much as with quantum dot size. A change of sign is reported for small quantum dots. Model calculations within the framework of eight-band theory and the configuration interaction method were performed. Different sources for the fine-structure splitting are discussed, and piezoelectricity is pinpointed as the only effect reproducing the observed trend.  相似文献   

15.
We identify fundamental mechanisms of electron and hole dynamics in self-organized InAs/GaAs quantum dots (QDs) subject to vertical electric fields by photocurrent investigations. We propose a spin–flip mechanism involving a spin exchange between neighboring QDs. The spin–flip process is revealed in the photocurrent dynamics when the exciton population increases unexpectedly with reverse bias.  相似文献   

16.
We measure the dynamics of nuclear spins in a single-electron charged self-assembled InGaAs quantum dot with negligible nuclear spin diffusion due to dipole-dipole interaction and identify two distinct mechanisms responsible for the decay of the Overhauser field. We attribute a temperature-independent decay lasting ~100 sec at 5 T to intradot diffusion induced by hyperfine-mediated indirect nuclear spin interaction. By repeated polarization of the nuclear spins, this diffusion induced partial decay can be suppressed. We also observe a gate voltage and temperature-dependent decay stemming from cotunneling mediated nuclear spin flips that can be prolonged to ~30 h by adjusting the gate voltage and lowering the temperature to ~200 mK. Our measurements indicate possibilities for exploring quantum dynamics of the central spin model.  相似文献   

17.
Pressure-induced binding energies of an exciton and a biexciton are studied taking into account the geometrical confinement effect in a CdTe/ZnTe quantum dot. Coulomb interaction energy is obtained using Hartree potential. The energy eigenvalue and wave functions of exciton and the biexciton are obtained using the self-consistent technique. The effective mass approximation and BenDaniel-Duke boundary conditions are used in the self-consistent calculations. The pressure-induced nonlinear optical absorption coefficients for the heavy hole exciton and the biexciton as a function of incident photon energy for CdTe/ZnTe quantum dot are investigated. The optical gain coefficient with the injection current density, in the presence of various hydrostatic pressure values, is studied in a CdTe/ZnTe spherical quantum dot. The pressure-induced threshold optical pump intensity with the dot radius is investigated. The results show that the pressure-induced electronic and optical properties strongly depend on the spatial confinement effect.  相似文献   

18.
Chamarro  M.  Gourdon  C.  Lavallard  P.  Lublinskaya  O.  Ekimov  A. I. 《Il Nuovo Cimento D》1995,17(11):1407-1412
Il Nuovo Cimento D - We have investigated the fine structure of luminecence of CdSe nanocrystals observed with size-selective excitation. We show that the luminescence line closest to the laser...  相似文献   

19.
Chamarro  M.  Gourdon  C.  Lavallard  P.  Lublinskaya  O.  Ekimov  A. I. 《Il Nuovo Cimento D》1995,17(11-12):1407-1412
Il Nuovo Cimento D - We have investigated the fine structure of luminecence of CdSe nanocrystals observed with size-selective excitation. We show that the luminescence line closest to the laser...  相似文献   

20.
We present a cross-sectional scanning tunneling microscopy (X-STM) investigation of InAs quantum dots in a GaAs matrix. The structures were grown by molecular beam epitaxy (MBE) at a low growth rate of 0.01 ML/s and consist of five layers of uncoupled quantum dot structures. Detailed STM images with atomic resolution show that the dots consist of an InGaAs alloy and that the indium content in the dot increases towards the top. The analysis of the height versus base-length relation obtained from cross-sectional images of the dots shows that the shape of the dots resembles that of a truncated pyramid and that the square base is oriented along the [010] and [100] directions. Using scanning tunneling spectroscopy (STS) we determined the onset for electron tunneling into the conduction and out of the valence band, both in the quantum dots and in the surrounding GaAs matrix. We found equal voltages for tunneling out of the valence band in GaAs or InGaAs whereas tunneling into GaAs occurred at higher voltages than in InGaAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号