首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 811 毫秒
1.
This article is concerned with the identification of probabilistic characterizations of random variables and fields from experimental data. The data used for the identification consist of measurements of several realizations of the uncertain quantities that must be characterized. The random variables and fields are approximated by a polynomial chaos expansion, and the coefficients of this expansion are viewed as unknown parameters to be identified. It is shown how the Bayesian paradigm can be applied to formulate and solve the inverse problem. The estimated polynomial chaos coefficients are hereby themselves characterized as random variables whose probability density function is the Bayesian posterior. This allows to quantify the impact of missing experimental information on the accuracy of the identified coefficients, as well as on subsequent predictions. An illustration in stochastic aeroelastic stability analysis is provided to demonstrate the proposed methodology.  相似文献   

2.
Some basic problems of the probabilistic treatment of fields are considered, proceeding from the fundamentals of the complete probability theory. Two essentially equivalent definitions of random fields related to continuous objects are suggested. It is explained why the conventional classical probabilistic treatment generally is inapplicable to fields in principle. Two types of finite-dimensional random variables created by random fields are compared. Some general regularities related to Lagrangian and Hamiltonian partial equations, obtainable proceeding from the corresponding sets of ordinary differential equations, are revealed by using the functional derivative defined anew. It is shown that Hamiltonian random fields give rise to two types of Hamiltonian random variables, variables of the second type being those considered in the author's previous paper and immediately suited to the quantum approach. The results obtained are illustrated by some general examples. Critical remarks concerning second quantization are made, demonstrating the artificiality of this method. It is emphasized that the given probabilistic consideration of fields cannot be directly applied to, for instance, the electromagnetic field, which needs a special treatment.  相似文献   

3.
张莹  徐伟  孙晓娟  方同 《物理学报》2007,56(10):5665-5673
讨论了具有有界随机参数的随机Bonhoeffer-Van der Pol系统的随机混沌现象,并利用噪声对其进行控制.首先运用Chebyshev多项式逼近的方法,将随机Bonhoeffer-Van der Pol系统转化为等价的确定性系统,使原系统的随机混沌控制问题转换为等价的确定性系统的确定性混沌控制问题,继而可用Lyapunov指数指标来研究等价确定性系统的确定性混沌现象和控制问题.数值结果表明,随机Bonhoeffer-Van der Pol系统的随机混沌现象与相应的确定性Bonhoeffer-Van der Pol系统极为相似.利用噪声控制法可将混沌控制到周期轨道,但是在随机参数及其强度的影响下也呈现出一些特点.  相似文献   

4.
The polynomial chaos decomposition of stochastic variables and processes is implemented in conjunction with optimal polynomial control of nonlinear dynamical systems. The procedure is demonstrated on a base-excited system whereby ground motion is modeled as a stochastic process with a specified correlation function and is approximated by its Karhunen-Loeve expansion. An adaptive scheme for stochastic approximation with polynomial chaos bases is proposed which is based on a displacement-velocity norm and is applied to the identification of phase orbits of nonlinear oscillators. This approximation is then integrated in the design of an optimal polynomial controller, allowing for the efficient estimation of statistics and probability density functions of quantities of interest. Numerical investigations are carried out employing the polynomial chaos expansions and the Lyapunov asymptotic stability condition based control policy. The results reveal that the performance, as gaged by probabilistic quantities of interest, of the controlled oscillators is greatly improved. A comparative study is also presented against the classical stochastic optimal control, whereby statistical linearization based LQG is employed to design the optimal controller. It is remarked that the proposed polynomial chaos expansion is a preferred approach to the optimal control of nonlinear random oscillators.  相似文献   

5.
李月  杨宝俊  杜立志  袁野 《中国物理》2003,12(7):714-720
Recently, it has become an important problem to confirm the bifurcation threshold value of a chaos detectionsystem for a weak signal in the fields of chaos detection. It is directly related to whether the results of chaos detectionare correct or not. In this paper, the discrimination system for the dynamic behaviour of a chaos detection system fora weak signal is established by using the theory of linear differential equation with periodic coefficients and computingthe Lyapunov exponents of the chaos detection system; and then, the movement state of the chaos detection system isdefined. The simulation experiments show that this method can exactly confirm the bifurcation threshold value of thechaos detection svstem.  相似文献   

6.
Prequantum classical statistical field theory (PCSFT) is a model that provides the possibility to represent the averages of quantum observables (including correlations of observables on subsystems of a composite system) as averages with respect to fluctuations of classical random fields. In view of the PCSFT terminology, quantum states are classical random fields. The aim of our approach is to represent all quantum probabilistic quantities by means of classical random fields. We obtain the classical-random-field representation for pairwise correlations in three-partite quantum systems. The three-partite case (surprisingly) differs substantially from the bipartite case. As an important first step, we generalized the theory developed for pure quantum states of bipartite systems to the states given by density operators.  相似文献   

7.
The propagation of waves in a medium having random inhomogeneities is studied using polynomial chaos (PC) expansions, wherein environmental variability is described by a spectral representation of a stochastic process and the wave field is represented by an expansion in orthogonal random polynomials of the spectral components. A different derivation of this expansion is given using functional methods, resulting in a smaller set of equations determining the expansion coefficients, also derived by others. The connection with the PC expansion is new and provides insight into different approximation schemes for the expansion, which is in the correlation function, rather than the random variables. This separates the approximation to the wave function and the closure of the coupled equations (for approximating the chaos coefficients), allowing for approximation schemes other than the usual PC truncation, e.g. by an extended Markov approximation. For small correlation lengths of the medium, low-order PC approximations provide accurate coefficients of any order. This is different from the usual PC approximation, where, for example, the mean field might be well approximated while the wave function (which includes other coefficients) would not be. These ideas are illustrated in a geometrical optics problem for a medium with a simple correlation function.  相似文献   

8.
This paper presents and discusses physical models for simulating some aspects of neural intelligence, and, in particular, the process of cognition. The main departure from the classical approach here is in utilization of a terminal version of classical dynamics introduced by the author earlier. Based upon violations of the Lipschitz condition at equilibrium points, terminal dynamics attains two new fundamental properties: it is spontaneous and nondeterministic. Special attention is focused on terminal neurodynamics as a particular architecture of terminal dynamics which is suitable for modeling of information flows. Terminal neurodynamics possesses a well-organized probabilistic structure which can be analytically predicted, prescribed, and controlled, and therefore which presents a powerful tool for modeling real-life uncertainties. Two basic phenomena associated with random behavior of neurodynamic solutions are exploited. The first one is a stochastic attractor—a stable stationary stochastic process to which random solutions of a closed system converge. As a model of the cognition process, a stochastic attractor can be viewed as a universal tool for generalization and formation of classes of patterns. The concept of stochastic attractor is applied to model a collective brain paradigm explaining coordination between simple units of intelligence which perform a collective task without direct exchange of information. The second fundamental phenomenon discussed is terminal chaos which occurs in open systems. Applications of terminal chaos to information fusion as well as to explanation and modeling of coordination among neurons in biological systems are discussed. It should be emphasized that all the models of terminal neurodynamics are implementable in analog devices, which means that all the cognition processes discussed in the paper are reducible to the laws of Newtonian mechanics.  相似文献   

9.
We review the methods and use of random quantum states with particular emphasis on recent theoretical developments and applications in various fields. The guiding principle of the review is the idea that random quantum states can be understood as classical probability distributions in the Hilbert space of the associated quantum system. We show how this central concept connects questions of physical interest that cover different fields such as quantum statistical physics, quantum chaos, mesoscopic systems of both non-interacting and interacting particles, including superconducting and spin–orbit phenomena, and stochastic Schrödinger equations describing open quantum systems.  相似文献   

10.
The effect of a small or slow perturbation on a Hamiltonian system with one degree of freedom is considered. It is assumed that the phase portrait ("phase plane") of the unperturbed system is divided by separatrices into several regions and that under the action of the perturbations phase points can cross these separatrices. The probabilistic phenomena are described that arise due to these separatrix crossings, including the scattering of trajectories, random jumps in the values of adiabatic invariants, and adiabatic chaos. These phenomena occur both in idealized problems in classical mechanics and in real physical systems in planetary science and plasma physics contexts.  相似文献   

11.
Stochastic analysis of random heterogeneous media provides useful information only if realistic input models of the material property variations are used. These input models are often constructed from a set of experimental samples of the underlying random field. To this end, the Karhunen–Loève (K–L) expansion, also known as principal component analysis (PCA), is the most popular model reduction method due to its uniform mean-square convergence. However, it only projects the samples onto an optimal linear subspace, which results in an unreasonable representation of the original data if they are non-linearly related to each other. In other words, it only preserves the first-order (mean) and second-order statistics (covariance) of a random field, which is insufficient for reproducing complex structures. This paper applies kernel principal component analysis (KPCA) to construct a reduced-order stochastic input model for the material property variation in heterogeneous media. KPCA can be considered as a nonlinear version of PCA. Through use of kernel functions, KPCA further enables the preservation of higher-order statistics of the random field, instead of just two-point statistics as in the standard Karhunen–Loève (K–L) expansion. Thus, this method can model non-Gaussian, non-stationary random fields. In this work, we also propose a new approach to solve the pre-image problem involved in KPCA. In addition, polynomial chaos (PC) expansion is used to represent the random coefficients in KPCA which provides a parametric stochastic input model. Thus, realizations, which are statistically consistent with the experimental data, can be generated in an efficient way. We showcase the methodology by constructing a low-dimensional stochastic input model to represent channelized permeability in porous media.  相似文献   

12.
A weightedL 2 norm is introduced in which Markov operators, e.g., associated with noisy maps, are contracting provided the kernel (i.e., the transitional distribution) is smooth enough. This results in strong relaxational properties of noisy maps. Similar to this norm, integral functionals appear useful when studying spatiotemporal chaos and random fields.  相似文献   

13.
Fractal groups (also called self-similar groups) is the class of groups discovered by the first author in the 1980s with the purpose of solving some famous problems in mathematics, including the question of raising to von Neumann about non-elementary amenability (in the association with studies around the Banach-Tarski Paradox) and John Milnor’s question on the existence of groups of intermediate growth between polynomial and exponential. Fractal groups arise in various fields of mathematics, including the theory of random walks, holomorphic dynamics, automata theory, operator algebras, etc. They have relations to the theory of chaos, quasi-crystals, fractals, and random Schrödinger operators. One important development is the relation of fractal groups to multi-dimensional dynamics, the theory of joint spectrum of pencil of operators, and the spectral theory of Laplace operator on graphs. This paper gives a quick access to these topics, provides calculation and analysis of multi-dimensional rational maps arising via the Schur complement in some important examples, including the first group of intermediate growth and its overgroup, contains a discussion of the dichotomy “integrable-chaotic” in the considered model, and suggests a possible probabilistic approach to studying the discussed problems.  相似文献   

14.
The majority of schemes used for acoustic monitoring of temperature fields in the ocean are based on measuring the variations of the so-called ray arrival times, i.e., the travel times of sound pulses along different ray trajectories connecting a source and a receiver. The solution of the inverse problem is considerably hindered by the fact that, in the case of signal detection by a point receiver, it is possible to resolve only the sound pulses propagating along steep rays. To a large extent, this is caused by the phenomenon of ray chaos, which is fully developed at distances of about one thousand of kilometers. The present study shows that the use of a vertical receiving array provides an opportunity to loosen this restriction. An appropriate space-time processing procedure is proposed. The procedure is based on the characteristics of ray arrival distribution in the time-depth plane that remain stable even under the conditions of ray chaos.  相似文献   

15.
We study the statistics of the Wigner delay time and resonance width for a Bloch particle in ac and dc fields in the regime of quantum chaos. It is shown that after appropriate rescaling the distributions of these quantities have a universal character predicted by the random matrix theory of chaotic scattering.  相似文献   

16.
We show that the basic equation of the theory of open systems, the Gorini–Kossakowski–Sudarshan–Lindblad equation, as well as its linear and nonlinear generalizations have a natural classical probabilistic interpretation – within the framework of prequantum classical statistical field theory. The latter gives an example of the classical probabilistic model (with random fields as subquantum variables) reproducing the basic probabilistic predictions of quantum mechanics.  相似文献   

17.
吴存利  马少娟  孙中奎  方同 《物理学报》2006,55(12):6253-6260
研究了谐和激励下含有界随机参数Duffing系统(简称随机Duffing系统)中的随机混沌及其延迟反馈控制问题.借助Gegenbauer多项式逼近理论,将随机Duffing系统转化为与其等效的确定性非线性系统.这样,随机Duffing系统在谐和激励下的混沌响应及其控制问题就可借等效的确定性非线性系统来研究.分析阐明了随机混沌的主要特点,并采用Wolf算法计算等效确定性非线性系统的最大Lyapunov指数,以判别随机Duffing系统的动力学行为.数值计算表明,恰当选取不同的反馈强度和延迟时间,可分别达到抑制或诱发系统混沌的目的,说明延迟反馈技术对随机混沌控制也是十分有效的. 关键词: 随机Duffing系统 延迟反馈控制 随机混沌 Gegenbauer多项式  相似文献   

18.
The field nowadays called “many-body quantum chaos” was started in 1939 with the article by I.I. Gurevich studying the regularities of nuclear spectra. The field has been extensively developed recently, both mathematically and in application to mesoscopic systems and quantum fields. We argue that nuclear physics and the theory of quantum chaos are mutually beneficial. Many ideas of quantum chaos grew up from the factual material of nuclear physics; this enrichment still continues to take place. On the other hand, many phenomena in nuclear structure and reactions, as well as the general problem of statistical physics of finite strongly interacting systems, can be understood much deeper with the help of ideas and methods borrowed from the field of quantum chaos. A brief review of the selected topics related to the recent development is presented.  相似文献   

19.
The design of the new compound two-dimensional chaotic function is presented by exploiting two one-dimensional chaotic functions which switch randomly, and the design is used as a chaotic sequence generator which is proved by Devaney’s definition proof of chaos. The properties of compound chaotic functions are also proved rigorously. In order to improve the robustness against difference cryptanalysis and produce avalanche effect, a new feedback image encryption scheme is proposed using the new compound chaos by selecting one of the two one-dimensional chaotic functions randomly and a new image pixels method of permutation and substitution is designed in detail by array row and column random controlling based on the compound chaos. The results from entropy analysis, difference analysis, statistical analysis, sequence randomness analysis, cipher sensitivity analysis depending on key and plaintext have proven that the compound chaotic sequence cipher can resist cryptanalytic, statistical and brute-force attacks, and especially it accelerates encryption speed, and achieves higher level of security. By the dynamical compound chaos and perturbation technology, the paper solves the problem of computer low precision of one-dimensional chaotic function.  相似文献   

20.
李爽  李倩  李佼瑞 《物理学报》2015,64(10):100501-100501
针对随机相位作用的Duffing混沌系统, 研究了随机相位强度变化时系统混沌动力学的演化行为及伴随的随机共振现象. 结合Lyapunov指数、庞加莱截面、相图、时间历程图、功率谱等工具, 发现当噪声强度增大时, 系统存在从混沌状态转化为有序状态的过程, 即存在噪声抑制混沌的现象, 且在这一过程中, 系统亦存在随机共振现象, 而且随机共振曲线上最优的噪声强度恰为噪声抑制混沌的参数临界点. 通过含随机相位周期力的平均效应分析并结合系统的分岔图, 探讨了噪声对混沌运动演化的作用机理, 解释了在此过程中随机共振的形成机理, 论证了噪声抑制混沌与随机共振的相互关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号