首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The viscosity of carbon dioxide was measured over the temperature range T = (253.15 to 473.15) K with pressures up to 1.2 MPa utilizing a new rotating-body viscometer. The relative expanded combined uncertainty (k = 2) in viscosity (including uncertainties of temperature and pressure) was (0.20 to 0.41)%. The instrument was specifically designed for measurements at low gas densities and enables measurements of the dynamic viscosity at temperatures between T = 253.15 K and T = 473.15 K with pressures up to 2 MPa. For carbon dioxide, the fluid specific measuring range with regard to pressure was limited to 1.2 MPa due to the formation of disturbing vortices inside the measuring cell at higher pressures. The model function for the viscosity measurement was extended in such a way that the dynamic viscosity was measured relative to helium. Therefore, the influence of the geometry of the concentric cylindrical system inside the measuring cell became almost negligible. Moreover, a systematic offset resulting from a small but inevitable eccentricity of the cylindrical system was compensated for. The residual damping, usually measured in vacuum, was calibrated in the entire temperature range using viscosity values of helium, neon and argon calculated ab initio; at T = 298.15 K recommended reference values were used. A viscosity dependent offset of the measured viscosities, which was observed in previously published data, did not occur when using the calibrated residual damping. The new carbon dioxide results were compared to other experimental literature data and to the correlation, which is currently considered the reference for viscosities of carbon dioxide.  相似文献   

2.
An acoustic Greenspan viscometer was used to measure the kinematic viscosity and speed of sound in the gases: CO, CO2, SiF4, SF6, C4F8, and NH3. The measurements cover the temperature range 220 K to 375 K, and pressures up to 3.4 MPa or 80% of the saturation pressure.The viscometer was calibrated at 298.16 K using five reference gases, Ar, He, N2, CH4, and C3H8, for which the viscosity and the speed of sound are known. With this calibration, we estimated the relative standard uncertainty of the kinematic viscosity ur(η/ρ) = 0.006 and the uncertainty of speed of sound ur(c) = 0.0001, except for very low pressures where the signal-to-noise ratio deteriorates and quality factor for the Helmholtz mode is ?20.  相似文献   

3.
In the present work viscosity data for three different samples with two different purity grades of diisodecyl phthalate (DIDP) are reported from 303.15 K to 373.15 K up to 60 MPa, together with density values from 283.15 K to 398.15 K and up to 70 MPa. The experimental measurements have been performed with a rotational automated viscometer Anton Paar Stabinger SVM3000, a rolling-ball viscometer Ruska 1602-830 for high pressures and a recently automated Anton Paar DMA HPM vibrating-tube densimeter. The measured data for viscosity have been compared with previous literature values and could be useful to establish together with previous viscosity data, a correlation of the full viscosity surface η(T, P) of DIDP. This correlation is needed for the calibration and verification of high-pressure viscometers at moderate viscosities.  相似文献   

4.
A new falling-body viscometer has been implemented to measure viscosity of liquids in a temperature range from (313.15 to 363.15) K at pressures up to 150 MPa. The accuracy of the viscometer was verified after comparing experimental results of squalane with previous literature data finding an average absolute deviation lower than 1.5%. With this device, we have measured viscosity values for three ionic liquids: 1-ethyl-3-methylimidazolium ethylsulfate, 1-butyl-1-methylpyrrolidinium bis(trifluoro-methylsulfonyl)imide and 1-(2-methoxyethyl)-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide within the temperature and pressure ranges noted above. The experimental values were correlated as a function of temperature and pressure with four different equations. In addition, we have analysed the pressure–viscosity derived properties for these fluids and for other five ionic liquids using literature values.  相似文献   

5.
Thermophysical properties, {(p, ρ, T) at T = (283.15 to 393.15) K, pressures up to p = 100 MPa, and viscosity at T = (283.15 to 373.15) K and p = 0.101 MPa}, of 1-butyl-4-methylpyridinium tetrafluoroborate [b4mpy][BF4] are reported. The measurements were carried out with a recently constructed Anton-Paar DMA HPM vibration-tube densimeter and a fully automated SVM 3000 Anton-Paar rotational Stabinger viscometer. The vibration-tube densimeter was calibrated using double-distilled water, methanol, toluene, and aqueous NaCl solutions.An empirical equation of state for fitting of the (p, ρ, T) data of [b4mpy][BF4] has been developed as a function of pressure and temperature to calculate the thermal properties of the ionic liquid (IL), such as isothermal compressibility, isobaric thermal expansibility, differences in isobaric and isochoric heat capacities, thermal pressure coefficient, and internal pressure. Internal pressure and the temperature coefficient of internal pressure data were used to make conclusions on the molecular characteristics of the IL.  相似文献   

6.
A high-pressure flow calorimeter has been used to determine highly accurate isobaric heat capacities for different viscous fluids, squalane (SQN), bis(2-ethylhexyl) sebacate (DEHS) and bis(2-ethylhexyl) phthalate (DEHP) from T = (293.15 to 353.15) K and up to 30 MPa. The experimental device was adapted for viscous liquids at high pressure and it can measure heat capacities with an estimated total uncertainty better than 1%. The isobaric heat capacity values were analysed together with their temperature and pressure dependences. In addition, a fitting equation of the experimental molar isobaric heat capacity for these viscous fluids as a function of temperature and pressure was proposed.  相似文献   

7.
The properties of ethyl trifluoroacetate (CF3COOCH2CH3) were measured as a function of temperature: density (278.08 to 322.50) K, viscosity (293.45 to 334.32) K, saturated vapor pressure (293.35 to 335.65) K. The density data were fitted to a quadratic polynomial equation, and the viscosity data were regressed to the Andrade equation. The correlation coefficient (R2) of equations for density and viscosity are 0.9997 and 0.9999, respectively. The correlation between saturated vapor pressures and temperatures was achieved with a maximum absolute relative deviation of 0.142%. In addition, the molar evaporation enthalpy in the range of T = (293.35 to 335.65) K was estimated by the Clausius–Clapeyron equation.  相似文献   

8.
Squalane is being recommended as a secondary reference material for viscometry at moderate to high pressure and at moderate viscosity. As part of this work, a correlation has been developed for atmospheric pressure (Comuñas et al., 2013) [12]. Here we report new experimental high pressure viscosities for squalane (176 data points obtained for temperatures (293.15 to 363.15) K, at pressures up to 350 MPa with a maximum viscosity of 745 mPa · s). These have been determined with four different falling-body viscometers as well as a quartz crystal resonator viscometer. A preliminary high pressure viscosity correlation for squalane is proposed, based on our new data. At pressures up to 350 MPa, this correlation provides an absolute average deviation of 1.5% with a maximum absolute deviation of 8.9%. Comparison is made between the different instruments. In addition, we have also considered the validity of a thermodynamic scaling model.  相似文献   

9.
This work reports the dynamic viscosity data (a total of 72 points) of a series of primary amines which exhibit small association consisting of pentylamine, hexylamine and heptylamine at four temperatures between (293.15 and 353.15) K (every 20 K), and pressures up to 100 MPa (every 20 MPa) which allows to study the influence of the chain length. A falling body viscometer with an uncertainty of ±2% was used to perform these measurements.The variations of dynamic viscosity are discussed with respect to their behavior due to chain length. Six different models, most of them with a physical and theoretical background, are studied in order to investigate how they take the chain length influence and effect into account through their required model parameters. The evaluated models are based on the empirical Vogel–Fulcher–Tamman (VFT) representation (combined with Tait-like equation), the rough hard-sphere scheme, the concept of the free-volume, the friction theory and a correlation derived from molecular dynamics. A recent scaling viscosity model has also been considered. These models need some adjustable parameters except the molecular dynamic correlation which is entirely predictive. Overall a satisfactory representation of the viscosity of these amines is found for the different models within the considered T, p range taking into account their simplicity. Moreover it has been verified that the viscosity is a unique function of TVγ where the exponent γ is related to the steepness of the intermolecular repulsive potential (T: temperature, and V: specific volume).  相似文献   

10.
The viscosity of the binary system ethanol + n-heptane has been measured with a falling-body viscometer for seven compositions as well as for the pure compounds in the temperature range 293.15–353.15 K and up to 100 MPa with an experimental uncertainty of ±2%. At 0.1 MPa, the viscosity has been measured with a classical capillary viscometer (Ubbelohde) with an uncertainty of ±1%. A total of 208 experimental data points are reported. The viscosity behavior of this binary system is interpreted as the results of changes in the free volume, and the breaking or weakening of hydrogen bonds. The excess activation energy for viscous flow of the mixtures is negative with a maximum absolute value of 0.3 kJ mol−1, indicating a very weakly interacting system. The data of this binary system as well as those recently measured for ethanol + toluene have been used to study the performance of some viscosity models with a physical and theoretical background. The evaluated models are based on the hard-sphere scheme, the concepts of the free-volume and the friction theory, and a model derived from molecular dynamics. In addition to these models, the simple compositional models by Grunberg–Nissan and Katti–Chaudhri have also been applied. Overall a satisfactory representation of the viscosity of these two binary ethanol + C7 hydrocarbon systems is found for the different models within the considered T, P range taking into account their simplicity.  相似文献   

11.
In this work, the results of density, viscosity, and surface tension measurements for ethanol are presented. Ethanol with stated mass fraction purity greater than 0.998 was further purified using molecular sieves. Density was measured within the temperature and pressure ranges, respectively, T = (278.15 to 353.15) K and p = (0.1 to 35) MPa by means of a vibrating tube densimeter, model DMA 512P from Anton Paar with an estimated uncertainty of ±0.5 kg · m?3. The experimental (p, ρ, T) results have been correlated by Tait equation. From this equation the isobaric expansivity, the isothermal compressibility, and the thermal pressure coefficient have been calculated. Viscosity was measured over the range T = (273.15 to 346.15) K using an Ubbelohde viscometer with a Schott–Geräte automatic measuring unit (Model AVS-470) with the associated uncertainty of ±0.001 mPa · s. The measured values were combined with selected values from the literature covering the range T = (223 K to 503) K, and the VTF model has been fitted to all the data. The surface tension of the liquid was measured using a tensiometer KSV Sigma 70 with a Du-Noüy ring for the range of T = (274.77 to 318.99) K with an uncertainty of ±0.01 mN · m?1. Using these data and critically assessed data of other authors compiled from the literature, a form of the IAPWS equation was used to correlate the surface tension within the temperature range 223 K up to the critical temperature.  相似文献   

12.
The speeds of sound in 1-hexanol and 2-ethyl-1-butanol have been measured over the temperature range from (293.15 to 318.15) K and at pressures up to 101 MPa. The densities have been measured within the temperature range from (283.15 to 343.15 or 353.15) K under atmospheric pressure. For the measurements, a pulse-echo-overlap method and a vibrating tube densimeter have been used. Additionally, in the case of 2-ethyl-1-butanol, the isobaric heat capacities from T = (293.15 to 323.15) K at atmospheric pressure have been measured by means of a DSC calorimeter. The experimental results are then used to calculate the densities and isobaric heat capacities as a function of temperature and pressure by means of a numerical integration technique. The effects of pressure and temperature on these and the related properties are discussed. Densities are correlated by means of the Tait equation.  相似文献   

13.
The vapour pressures of n-pentane have been measured using comparative ebulliometry with water as the reference substance. The measurements cover the temperature and pressure ranges 309 K and 102 kPa to 456 K and 2728 kPa. When combined with selected literature results, the range was extended downwards to a temperature and pressure of 268.8 K and 19.9 kPa and the combined data sets were correlated by a Wagner-type equation with a standard deviation of 18 Pa in the vapour pressure. The critical pressure was treated as an adjustable parameter and the value pc = 3367.4 kPa was obtained using a selected critical temperature, Tc = 469.7 K. The calculated normal boiling temperature was Tb = 309.207 K and an extrapolation to the triple point temperature Ttp = 143.48 K predicted a pressure of ptp = 0.078 Pa.  相似文献   

14.
A new calibration procedure was used and four new temperature probes have been placed on a falling-body viscometer to improve its accuracy. The new configuration and calibration procedure allow measuring viscosities with an uncertainty of 3.5% at pressures up to 150 MPa. This device was employed to measure viscosities as a function of temperature and pressure for two ionic liquids (ILs): 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate and 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate. Besides, we have measured the flow curves at pressures up to 75 MPa and shear rates up to 1000 s−1 in a Couette rheometer. Dynamic viscosities were correlated as function of temperature and pressure with four different equations with average absolute deviation lower than 1%. The pressure-viscosity and temperature-viscosity derived properties were analyzed and compared with those of other ionic liquids. Furthermore, experimental data were used to check the application of the thermodynamic scaling approach as well as the hard-sphere scheme. Both models represent the viscosity values with average relative deviations lower than 2%.  相似文献   

15.
In this work, new results for density, viscosity, and vapour pressure of (triethylene glycol or propylene glycol) in H2O with LiCl or LiBr systems over temperatures ranging from 303.15 K to 343.15 K are presented. For each ternary system, four systems of which (4 to 25) mass% salt mixed with various glycols (50 to 80) mass% were studied. Incorporated with the pseudo-solvent approach, a vapour pressure model based on the mean spherical approximation for aqueous electrolyte solutions was used to represent the measured vapour pressure of the investigated systems. The present density and viscosity results were also correlated as a function of temperature and composition. The correlations yield satisfactory results. Compared to the conventionally used liquid desiccants, the vapour pressures of the systems studied yield smaller values of vapour pressures. The properties presented in this work are, in general, of sufficient accuracy for most engineering-design calculations.  相似文献   

16.
A recently developed Knudsen effusion apparatus was improved and used for measurements of vapour pressures of selected organic compounds. Calorimetric studies were conducted using a Calvet-type calorimeter, complementing the information obtained for the vapour pressures and facilitating the modelling and analysis of the data.Vapour pressures of benzoic acid, a reference substance, were determined at temperatures between 269 K and 317 K, corresponding to a pressure range from 2 mPa to 1 Pa, extending the range of results available in the literature to lower pressures. Benzanthrone was studied between temperatures 360 K and 410 K (5 mPa–1 Pa) in order to test the apparatus at higher temperatures.Values presented in the literature for the vapour pressure of solid n-octadecane, one of the most promising compounds to be used as “phase change material” for textile applications, were found inconsistent with the triple point of the substance. Sublimation pressures were measured for this compound between T = 286 K and 298 K (2–20 mPa) allowing the correction of the existing values. Finally, vapour pressures of diphenyl carbonate, a compound of high industrial relevance for its use in the production of polycarbonates, were determined from T = 302 K to 332 K (0.02–1 Pa).  相似文献   

17.
A new apparatus to measure simultaneously the density and viscosity of liquids has been designed and constructed based on the hydrostatic weighing and falling-body principles. The density and viscosity of monoethylene glycol (MEG), diethylene glycol (DEG), and triethylene glycol (TEG) and their binary, (50%MEG + 50%DEG), (50%MEG + 50%TEG), (50%DEG + 50%TEG), and ternary (33.33%MEG + 33.33%DEG + 33.34%TEG) mixtures have been measured over the temperature range from 293 K to 473 K and at atmospheric pressure. The expanded uncertainty of the density, pressure, temperature, and viscosity measurements at the 95% confidence level with a coverage factor of k = 2 is estimated to be 0.15% to 0.30%, 0.05%, 0.06 K, and 1.5% to 2.0% (depending on temperature and pressure ranges), respectively. The theoretically based Arrhenius–Andrade and Vogel–Tamman–Fulcher type equations were used to describe the temperature dependence of measured viscosities for pure polyethylene glycols and their mixtures.  相似文献   

18.
Measurements of (p, ρ, T) properties for isobutane in the compressed liquid phase have been obtained by means of a metal-bellows variable volumometer in the temperature range from 280 K to 440 K at pressures up to 200 MPa. The volume-fraction purity of isobutane used was 0.9999. The expanded uncertainties (k = 2) of temperature, pressure, and density measurements have been estimated to be less than 3 mK, 1.5 kPa (p  7 MPa), 0.06% (7 MPa < p  50 MPa), 0.1% (50 MPa < p  150 MPa), and 0.2% (p > 150 MPa), and 0.11%, respectively. In region more than 100 MPa at 280 K and 440 K, the uncertainty in density measurements rise up to 0.15% and 0.23%, respectively. The differences of the present density values at the same temperature between two series of measurements, in which the sample fillings are different, are within the maximum deviation of 0.09% in density, which is enough lower than the expanded uncertainty in density. Eight (p, ρ, T) measurements at the same temperatures and pressures as the literature values have been conducted for comparison. In addition, vapour pressures were measured at T = (280, 300) K. Moreover, the comparisons of the available equations of state with the present measurements are reported.  相似文献   

19.
The densities at high pressures of two dimethoxy end-capped poly(propylene glycols), CH3–O–[CH2–CH(CH3)–O]m–CH3, with average molar masses higher than 1300 g · mol?1, were measured in the range (0.1 to 60) MPa at five different temperatures from (298.15 to 398.15) K. The measurements were performed in a high-pressure vibrating tube densimeter. A correction factor, due to the viscosity of the sample, was applied to the experimental density values. The pressure–volume–temperature behavior of these lubricants was evaluated accurately over wide temperature and pressure ranges and correlated successfully with the empirical Tammann–Tait equation. The experimental data and the correlations were used to study the behavior and the influence of temperature and pressure on the isothermal compressibility, the isobaric thermal expansivity, and the internal pressure, as well as the effect of the polyether molecular structure on these properties.  相似文献   

20.
The Knudsen mass-loss effusion technique was used to measure the vapour pressures at different temperatures of two crystalline ruthenium complexes: tris(1,1,1-trifluoro-2,4-pentanedionate)ruthenium(III) {Ru(tfacac)3}, between T =  350.20 K and T =  369.17 K and tris(1,1,1,5,5,5-hexafluoro-2,4-pentanedionate)ruthenium(III) {Ru(hfacac)3} between T =  299.15 K and T =  313.14 K. From the temperature dependence of the vapour pressure of the crystalline compounds, the standard molar enthalpies of sublimation were derived by the Clausius–Clapeyron equation and the molar entropies of sublimation at equilibrium pressures were calculated. By using an estimated value for the heat capacity differences between the gas and the crystal phases the standard, po =  105Pa, molar enthalpies, entropies, and Gibbs energies of sublimation at T =  298.15 K, were derived:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号