首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Europium ions (Eu3+) and Lithium ions (Li+) codoped gadolinium orthovanadate with a tetragonal phase had been successfully synthesized by an efficient hydrothermal method. X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) were utilized to characterize the microstructure, morphology, and luminescent properties of as-prepared samples. The various concentrations (0~14 at.%) of Li ions were applied to investigate the effect of Li+ co-doping concentration on the crystalline structure, microstructure, and emission intensity of GdVO4:Eu3+, Li+ nanophosphors. The results demonstrated that Li+ ion co-doping changes the lattice parameters in two different ways. Moreover, the optical photoluminescent property was obtained when the Li+ co-doping concentration is 10 at.%. The influence of Li+ co-doping on the concentration quenching effect of Eu3+ was discussed as well. The concentration quenching threshold of Eu3+ was increased distinguishably. The potential mechanism was proposed in this paper.  相似文献   

2.
Blue-emitting Li4SrCa(SiO4)2:Eu2+ phosphors have been synthesized by solid-state reaction. The photoluminescence (PL) excitation spectrum shows broad-band absorption and matches well with the emission of a near-UV (n-UV) chip. The PL emission spectrum exhibits a broad-band emission peaking at 430 nm, which is the characteristic emission of the f–d transition of the Eu2+ ion. The diffuse reflection spectra, temperature-dependent emission spectra, fluorescence decay, and mechanism of concentration quenching are also studied in detail. Li4SrCa(SiO4)2:Eu2+ is a candidate blue phosphor for n-UV excited solid-state lighting.  相似文献   

3.
BaWO4:Eu3+,Bi3+ phosphors have been prepared by the conventional high-temperature solid-state reaction and chemical precipitation. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) technologies. When the phosphors are prepared by the high-temperature solidstate reaction, Bi3+ doping into BaWO4:Eu3+ can increase the emission intensity of 613 nm. However, maximum emission at about 595 nm was observed in Eu3+,Bi3+-doped BaWO4 phosphors prepared by the chemical precipitation. The decay constants (monitored at 595 and/or 613 nm) are within 45–100 s. The color purity of the Ba0:865WO4: Eu0:11,Bi0:025 phosphor (prepared by chemical precipitation) was 100%. The emission mechanism of Eu3+,Bi3+ in the BaWO4 phosphors is briefly discussed.  相似文献   

4.
We have studied the photoluminescence (PL) of (Y, Ln)VO4:Eu3+ (Ln=La and Gd) phosphors and the correlation of the PL of those phosphor with their crystal structure. It is found that (Y, Gd)VO4:Eu3+ phosphors have the same crystal structure as YVO4:Eu3+, which is tetragonal with a little different lattice parameters. In the case of (Y, La)VO4:Eu3+ phosphors, however, the gradual change from tetragonal to monoclinic structure of host lattice was observed as the amount of La ion increased. To investigate the PL property of (Y, Ln)VO4:Eu3+ (Ln=La and Gd) phosphors, vacuum ultraviolet (VUV) and ultraviolet (UV) excitation were used. The favorable crystal structure for the PL intensity of orthovanadate phosphor under 147 and 254 nm excitation was tetragonal containing Gd ion and under 365 nm excitation was monoclinic containing La ion which might have the lowest site symmetry for Eu3+ ion.  相似文献   

5.
The correlation between the crystal structure and luminescent properties of Eu3+-doped metal tungstate phosphors for white LEDs was investigated. Red-emitting A4−3x(WO4)2:Eux3+ (A=Li, Na, K) and B(4−3x)/2(WO4)2:Eux3+ (B=Mg, Ca, Sr) phosphors were synthesized by solid-state reactions. The findings confirmed that these phosphors exhibited a strong absorption in the near UV to green range, due to the intra-configurational 4f-4f electron transition of Eu3+ ions. The high doping concentration of Eu3+ enhanced the absorption of near UV light and red emission without any detectable concentration quenching. Based on the results of a Rietveld refinement, it was attributed to the unique crystal structure. In the crystal structure of the Eu3+-doped metal tungstate phosphor, the critical energy transfer distance is larger than 5 Å so that exchange interactions between Eu3+ ions would occur with difficulty, even at a high doping concentration. The energy transfer between Eu3+ ions, which causes a decrease in red emission with increasing concentration of Eu3+, appears to be due to electric multi-polar interactions. In addition, the Eu-O distance in the host lattice affected the shape of emission spectrum by splitting of emission peak at the 5D07F2 transition of Eu3+.  相似文献   

6.
The influence of lithium doping on the crystallization, the surface morphology, and the luminescent properties of pulsed laser deposited Y2−xGdxO3:Eu3+ thin film phosphors was investigated. The crystallinity, the surface morphology, and the photoluminescence (PL) of films depended highly on the Li-doping and the Gd content. The relationship between the crystalline and morphological structures and the luminescent properties was studied, and Li+ doping was found to effectively enhance not only the crystallinity but also the luminescent brightness of Y2−xGdxO3:Eu3+ thin films. In particular, the incorporation of Li and Gd into the Y2O3 lattice could induce remarkable increase in the PL. The highest emission intensity was observed Li-doped Y1.35Gd0.6O3:Eu3+ thin films whose brightness was increased by a factor of 4.6 in comparison with that of Li-doped Y2O3:Eu3+ thin films.  相似文献   

7.
Eu3+ and Sm3+ activated M2SiO4 (M=Ba, Sr and Ca) red-emitting phosphors were synthesized by a solid state reaction. The results of XRD and SEM measurements show that the samples are single phase and have irregular shape. The excitation and emission spectra indicate that these phosphors were effectively excited by ultraviolet (395 nm) and blue (466 nm) light and exhibited red performance. The charge compensator R+ (R+=Li+, Na+ and K+) injecting into the host efficiently enhanced the luminescence intensity of the M2SiO4: Eu3+ and M2SiO4: Sm3+ phosphors. The emission intensity of M2SiO4: Eu3+ and Sm3+ doping Li+ were higher than that of Na+ or K+.  相似文献   

8.
Eu3+-doped ZrO2 phosphors with different charge compensators (Li+, Na+, K+) were prepared by the sol-gel method. The properties of the as-obtained samples are characterized by X-ray diffraction, scanning electron microscope, photoluminescence spectra, and decay curve. The results show that ZrO2:Eu3+ phosphors with different charge compensation are mixed phase of tetragonal and monoclinic phase, and the volume fraction of tetragonal phase of ZrO2:Eu3+/Na+ phosphor is bigger than the other phosphors. The phosphors can emit strong red light at 606~616 nm (5D07F2) excited by ultraviolet light (395 nm). Compared with two charge compensation patterns in the ZrO2:Eu3+, it has been found that ZrO2:Eu3+ phosphors used Na+ as charge compensator show greatly enhanced red emission under 395 nm excitation and longer luminescence lifetime.  相似文献   

9.
A series of Eu2+ and Sm3+ co-doped Li2SrSiO4 phosphors are prepared by the high temperature solid-state reaction. The morphology, structure and spectroscopic properties of the prepared samples are characterized by scanning electron microscopy, X-ray diffraction, diffuse reflection spectra, photoluminescence spectra and electron paramagnetic resonance spectra, respectively. The effect of Sm3+ doping concentration on the photoluminescence intensity of the prepared samples is also investigated. The results indicate that the crystal structure of Li2SrSiO4 is not changed with the Eu2+, Sm3+ co-doping. The spherical-like particle size of the obtained product is about 20–30 nm in diameter. When the Sm3+ concentration is 0.3 mol% and the Eu2+ concentration is 0.7 mol%, the phosphors show the maximum emission intensity, which is 50% higher than that of Eu2+ doped Li2SrSiO4. Excited at 420 nm, the phosphor presents a single broad emission band peaking at 558 nm, which is ascribed to the 4f65d1 → 4f7 transitions of Eu2+ and 4G5/2 → 6H5/2 and 4G5/2 → 6H7/2 transitions of Sm3+. The Commission International de I′Eclairage chromaticity coordinates of Li2SrSiO4:0.7 mol% Eu2+, 0.3 mol% Sm3+ are x = 0.28, y = 0.28.  相似文献   

10.
In this study, photoluminescence (PL) and photostimulated luminescence (PSL) properties in KBr:Eu2+, Tl+ powder phosphors are reported. PL emission spectra of these Tl+ co-doped KBr:Eu2+ phosphors show four overlapping bands around 310, 325, 360 and 375 nm in addition to the characteristic of Eu2+ ions at 420 nm. These additional short wavelength bands were attributed to centres involving Tl+ ions. The decrease in PSL intensity of γ-irradiated KBr:Eu2+, Tl+ powder phosphors with Tl+ concentration and the absence of thallium emission bands in PSL were attributed to the efficient electron trapping by Tl+ ions during irradiation.  相似文献   

11.
Yb3+/Er3+ co-doped Zn2SiO4 ceramics are rapidly synthesized by the microwave radiation method. Green and red up-conversion emissions are observed in Zn2SiO4: Yb3+, Er3+ ceramics under 980 nm excitation. The influence of co-doped Li+ or Bi3+ ion on luminescence intensity for the phosphors has been investigated. At Li+ or Bi3+ doping concentration of 1 mol%, up-converted green emission can be increased by 6 times and 20 times, respectively. It is believed that co-doped Li+ or Bi3+ ion results in the local distortion of Er3+ in Zn2SiO4, increasing the intra-4f transitions of Er3+ ions. The local distortion is proved by spectral probing method with Eu3+.  相似文献   

12.
A flux fusion method was used to obtain the various sizes of Eu3+-activated Y2O3 red phosphors. The flux material was selected as an independent variable to control the physical properties of phosphor particles and their effects on the morphology and size distribution of phosphors were examined by scanning electron microscopy. The concentration of the flux materials and synthetic temperature were optimized for maximal photoluminescence intensity. Fluoride-based flux materials were found to work for the crystal formation of Eu3+-activated Y2O3. In particular, when a BaF2 flux was used during the reaction at 1450 °C for 3 h, the photoluminescence (PL) intensity of Eu3+-activated Y2O3 was 25% higher than that without a flux and spherical phosphors had a mean particle size of 4-5 μm. The morphology and size distribution of the synthesized Eu3+-activated Y2O3 phosphor were predominantly dependent upon the type and concentration of flux material and synthetic temperature.  相似文献   

13.
《Radiation measurements》2000,32(4):343-348
Ultraviolet radiation induced changes in photoluminescence (PL) and thermally stimulated luminescence (TSL) of europium activated calcium sulphate (CaSO4:Eu3+, Eu2+) and terbium doped calcium fluoride (CaF2:Tb3+) phosphors have been studied. PL measurements suggest conversion of Eu3+ to Eu2+ on 254 nm irradiation corresponding to charge transfer band of Eu3+ ions and reduction of Eu2+ ions with 365 nm illumination representing a f–d transition of Eu2+ ions. Similar studies carried out on CaF2:Tb3+ phosphor, however, do not show any significant wavelength specific changes. The integrated TSL output appears to be rate-dependent for both phosphors. The wavelength dependent changes in TSL output observed for CaSO4:Eu phosphor have been correlated with those obtained in PL studies. The changes in TSL and PL characteristics of CaF2:Tb3+ phosphor have been explained on the basis of stabilisation of traps based on matrix specific charge similarities.  相似文献   

14.
In our study, the 1% mol Eu2+ doped Li2CaSiO4: B3+ phosphors were prepared by the combustion method as fluorescent material for ultraviolet, light-emitting diodes (UV-LEDs) used as a light source. The properties of Li2 (Ca0.99, Eu0.01) SiO4: B3+ phosphors with urea concentration, doping boric acid and a series of initiating combustion temperature were investigated. The crystallization and particle sizes of Li2 (Ca0.99, Eu0.01) SiO4: B3+ has been investigated by using powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). Luminescence measurements showed that the phosphors can be efficiently excited by UV to the visible region, and exhibited bluish green light with a peak of 480 nm. The results showed that the boric acid was effective in improving the luminescence intensity of Li2 (Ca0.99, Eu0.01) SiO4: B3+ and the optimum molar ratio of boric acid to calcium nitrate was about 0.06. The optimized phosphors Li2 (Ca0.99, Eu0.01) SiO4: B 0.06 3+ showed 180% improved emission intensity compared with that of the Li2 (Ca0.99, Eu0.01) SiO4 phosphors under ultraviolet (λex =287 nm) excitation.   相似文献   

15.
The photoluminescence (PL) property of Y2MoO6:Eu3+ doped with Li+ is investigated in this paper. The red luminescence of Eu3+ in Y2MoO6 lattice has greatly enhanced by codoping monovalent alkali metal ions Li+ into the lattice. The drastic increase in the luminescence intensity of Y2?xLixMoO6:Eu3+ originates from the reason that the Li+ ions may serve as a self-promoter for better crystallization to reduce the defect or as a lubricant for the complete incorporation of the Eu3+ ions into the Y2MoO6 host.  相似文献   

16.
Pyrochlore‐structured yttrium titanate phosphors activated by trivalent europium ions (Y2Ti2O7(YT):Eu3+), with spherical morphology, were synthesized at different pH values by a solvothermal process. From the structural and morphological measurements, the annealing temperature had no effect on the spherical morphology of the YT:Eu3+ sample. The photoluminescence excitation and emission spectra were taken by activating the Eu3+ ions in the YT host lattice as functions of Eu3+ ion concentration and annealing temperature. The optimal doping concentration was found to be 4 mol%, exhibiting an excellent orange–red emission due to the highest intensity of the 5D07F1 transition. When the YT:Eu3+ phosphor was mixed with YAG:Ce3+ phosphor, a brilliant white light emission was achieved. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Sr2SiO4:Eu3+ and Sr2SiO4:Eu3+ doped with R+(R+=Li+, Na+ and K+) phosphors were prepared by conventional solid-state reaction and investigated by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and photoluminescence spectroscopy. XRD patterns and SEM reveal that the optimal firing condition for Sr2SiO4:Eu3+ was 1300 °C for 4 h. The excitation and emission spectra indicate that the phosphor can be effectively excited by ultraviolet (395 nm) and blue (466 nm) light and emits intense red light peaked at around 614 nm corresponding to the 5D07F2 transitions of Eu3+. In the research work, the effect of R+ contents on luminescence property and the Eu3+ concentration quenching process have also been investigated. The Eu3+ concentration quenching mechanism was verified to be a multipole-multipole interaction and the critical energy-transfer distance was calculated to be around 14.6 Å. The dopant R+(R+=Li+, Na+ and K+) as charge compensator in Sr2SiO4:Eu3+ can further enhance luminescence intensity, and the emission intensity of Sr2SiO4:Eu3+ doping Li+ is higher than that of Na+ or K+.  相似文献   

18.
Rare earth doped NaLa(WO4)2 nanoparticles have been prepared by a simply hydrothermal synthesis procedure. The X-ray diffraction (XRD) pattern shows that the Eu3+-doped NaLa(WO4)2 nanoparticles with an average size of 10-30 nm can be obtained via hydrothermal treatment for different time at 180 °C. The luminescence intensity of Eu3+-doped NaLa(WO4)2 nanoparticles depended on the size of the nanoparticles. The bright upconversion luminescence of the 2 mol% Er3+ and 20 mol% Yb3+ codoped NaLa(WO4)2 nanoparticles under 980 nm excitation could also be observed. The Yb3+-Er3+ codoped NaLa(WO4)2 nanoparticles prepared by the hydrothermal treatment at 180 °C and then heated at 600 °C shows a 20 times stronger upconversion luminescence than those prepared by hydrothermal treatment at 180 °C or by hydrothermal treatment at 180 °C and then heated at 400 °C.  相似文献   

19.
Novel nanosized Gd6WO12:Eu3+ phosphors were synthesized via a co-precipitation reaction. The crystal structure and morphology of the phosphors were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). It was found that the resultant powders show a regular and sphere-like shape with average particle size of 60 nm. Intrinsic red emission originating from Eu3+ was observed while excited at the W6+→O2− and Eu3+→O2− charge transfer bands or f-f absorption bands. The color coordinates of the phosphors were calculated to be x=0.625, y=0.375. The concentration dependence of the luminescence was studied, and optimum doping concentration for obtaining maximum emitting intensity was confirmed to be around 12 mol%. It was also found that the electric dipole-dipole interaction plays an important role for quenching luminescence of Eu3+.  相似文献   

20.
Two series of phosphors, Na0.5Gd0.5WO4: RE3+ and Na0.5Gd0.5(Mo0.75W0.25)O4: RE3+ (RE?=?Eu, Sm, Dy) have been synthesized by hydrothermal process to obtain the high purity, which have been characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM). The results suggest that Na0.5Gd0.5(Mo0.75W0.25)O4: RE3+ phosphors are more easily to crystallize than Na0.5Gd0.5WO4: RE3+ ones. Both of them present the characteristic luminescence of Eu3+, Sm3+ and Dy3+. Especially the photoluminescent properties of Na0.5Gd0.5WO4: x%Eu3+ (Sm3+) can be obtained to show white luminescence as the suitable doping concentration of Eu3+ or Sm3+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号