首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
In this study, a new approach for the preparation of a fluorescent europium(III) complex-doped silica nanoparticles has been developed. The synthesis process involved the following steps: (1) preparing silica nanoparticles by water-in-oil microemulsion method, (2) dyeing the spherical silica particles by europium(III): naphtoyltrifluoroacetone (NTA):trioctylphosphineoxide (TOPO), (3) adsorbing polyvinylpyrrolidone (PVP) onto the core structure and growing silica on PVP surface. The as-prepared nanoparticles exhibited stronger emission intensity, higher photo- and chemical stability. Despite the fact that europium(III) complex was doped into the nanoparticles, its fluorescence properties such as a wide Stokes shift, a narrow emission peak, and long fluorescence lifetime, were retained. The nanoparticles are uniform in shape and size (50 ± 5 nm in diameter). This study could provide new avenue for the fabrication of Eu: NTA:TOPO-based nanoparticles, facilitating their application in bioassay issues.  相似文献   

2.
The enzymatic hydrolysis of quinizarin diester in silica nanoparticle (NP) of 200 nm diameter is investigated by confocal fluorescence microscopy. The quinizarin diester substrate and the intermediate quinizarin monoester are non-fluorescent species and only the end product—quinizarin formed by enzymatic hydrolysis produces intense fluorescence of the silica NP. The enzyme activity of lipase adsorbed into silica NP was similar to that observed for lipase chemically bound to silica surface. In both situations, partial aggregation of the silica NP dispersed in thin film of polyvinylpyrrolidone was observed from fluorescence and scanning electron microscopy images. The fluorescence decay of the end product—quinizarin in silica NP was biexponential with decay times of 0.49 and 2.17 ns. These two decay times found are ascribed to quinizarin adsorbed in silica NP and dispersed in the surrounding medium, respectively.  相似文献   

3.
Quantum dots (QDs) and silica nanoparticles (SNs) are relatively new classes of fluorescent probes that overcome the limitations encountered by organic fluorophores in bioassay and biological imaging applications. We encapsulated QDs and SNs in liposomes and separated nanoparticle-loaded liposomes from unencapsulated nanoparticles by size exclusion chromatography. Fluorescence correlation spectroscopy was used to measure the average number of nanoparticles inside each liposome. Results indicated that nanoparticle-loaded liposomes were formed and separated from unencapsulated nanoparticles by using a Sepharose gel. As expected, fluorescence self-quenching of nanoparticles inside liposomes was not observed. Each liposome encapsulated an average of three QDs. These studies demonstrated that nanoparticles could be successfully encapsulated into liposomes and provided a methodology to quantify the number of nanoparticles inside each liposome by fluorescence correlation spectroscopy.  相似文献   

4.
This is the first report on the preparation and utilization of a novel red-region fluorescent dye (tetracarboxy aluminum phthalocyanine) doped silica nanoparticles. In these nanoparticles, the tetracarboxy aluminum phthalocyanine molecules were covalently bound to silica matrix to protect the dye leaking from nanoparticles in bio-applications. The surface of the nanoparticles was modified by amino groups and easily bioconjugated with goat anti-human IgG antibody. By employing these nanoparticles as fluorescent probe, a sensitive fluoroimmunoassay method has been developed for the determination of trace level of human IgG. The calibration graph for human IgG was linear over the range of 0–500 ng mL−1 with a detection limit of 1.6 ng mL−1. Compared with the corresponding system using free AlC4Pc as a probe for determining human IgG, the sensitivity of the proposed system was notably increased. The method was applied to the analysis of human IgG in human sera with satisfactory results.  相似文献   

5.
Monodisperse silica nanoparticles were synthesised by the well-known Stober protocol, then dispersed in acetonitrile (ACN) and subsequently added to a bisacetonitrile gold(I) coordination complex ([Au(MeCN)2]+) in ACN. The silica hydroxyl groups were deprotonated in the presence of ACN, generating a formal negative charge on the siloxy groups. This allowed the [Au(MeCN)2]+ complex to undergo ligand exchange with the silica nanoparticles and form a surface coordination complex with reduction to metallic gold (Au0) proceeding by an inner sphere mechanism. The residual [Au(MeCN)2]+ complex was allowed to react with water, disproportionating into Au0 and Au(III), respectively, with the Au0 adding to the reduced gold already bound on the silica surface. The so-formed metallic gold seed surface was found to be suitable for the conventional reduction of Au(III) to Au0 by ascorbic acid (ASC). This process generated a thin and uniform gold coating on the silica nanoparticles. The silica NPs batches synthesised were in a size range from 45 to 460 nm. Of these silica NP batches, the size range from 400 to 480 nm were used for the gold-coating experiments.  相似文献   

6.
Eu(DBM)3Phen-embedded silica nanoparticles were synthesized in water-in-oil (W/O) microemulsion containing aqueous phase of Eu(DBM)3Phen, surfactant Triton X-100, cosurfactant octanol and oil-phase cyclohexane. The size and morphology of the nanoparticles were characterized by transmission electron microscopy (TEM). The low-temperature time-resolved emission spectra indicate that the Eu complex in the silica nanoparticles have longer lifetime than that of the pure complex. Under 355 nm continuous excitation, the nanoparticles show high resistance to photobleaching. The free amino groups were attached to silica surfaces by copolymerization of 3-aminopropyl(triethoxy)silane. Preliminary results demonstrated that the silica-coated Eu complex nanoparticles can be a probe in the detection of biomolecular interactions.  相似文献   

7.
宿健  张谷令  彭洪尚 《发光学报》2018,39(9):1323-1329
提出一种新型的荧光及表面增强拉曼散射(SERS)双模式光学纳米探针。首先,通过再沉淀-包覆法合成二氧化硅包覆香豆素6的纳米颗粒,再在二氧化硅表面静电吸附多聚赖氨酸分子形成包覆层,随后通过原位还原的方法在多聚赖氨酸壳层复合银纳米颗粒,最后在银纳米颗粒表面吸附拉曼分子即形成双模式纳米探针。该探针通过二氧化硅包覆的荧光分子产生荧光信号,以多聚赖氨酸表面的银纳米颗粒作为SERS增强基底,利用拉曼分子获得SERS信号,实现了荧光及SERS双模式成像。荧光与表面增强拉曼散射相结合的双模式分析技术可同时发挥二者的优点,提高成像的分辨率和灵敏度,在生物医学领域具有重要的应用价值。  相似文献   

8.
Terbium(III), yttrium(III), and neodymium(III) complexes with 4-aminobenzoic acid have been co-doped into silica matrix. For the samples, the characteristic emissions of terbium(III) increase obviously with the addition of yttrium(III) complex, while the reverse is true with the addition of neodymium(III) complex. Compared with terbium(III) complex doped silica sample, the photoacoustic signal of the ligand decreases for terbium(III)–yttrium(III) complexes co-doped sample, and increases for terbium(III)-neodymium(III) complexes co-doped sample. The fluorescence quantum yields and lifetimes of the samples have been determined. The co-fluorescence mechanism has been discussed from radiative and nonradiative relaxations. The nephelauxetic parameters and photoacoustic branching vectors of neodymium(III) in the silica samples have also been calculated. The spectral result indicates that heteronuclear complexes may form in the silica matrix upon a suitable heat treatment. The co-fluorescence effect found in the inorganic matrix can contribute to the better design and application of rare earths containing fluorescent materials.  相似文献   

9.
The synthesis of highly monodispersed, homogeneous and stable luminescent silica nanoparticles, synthesized using a process based on the Stöber method is reported here. These particles have been functionalised with the ruthenium and europium complexes: bis (2,2??-bipyridine)-(5-aminophenanthroline) Ru bis (hexafluorophosphate), abbreviated to (Ru(bpy)2(phen-5-NH2)(PF6)), and tris (dibenzoylmethane)-mono (5-aminophenanthroline) europium(III), abbreviated to (Eu:TDMAP). Both dyes have a free amino group available, facilitating the covalent conjugation of the dyes inside the silica matrix. Due to the covalent bond between the dyes and the silica, no dye leaching or nanoparticle diameter modification was observed. The generic and versatile nature of the synthesis process was demonstrated via the synthesis of both europium and ruthenium-functionalised nanoparticles. Following this, the main emphasis of the study was the characterisation of the luminescence of the ruthenium-functionalised silica nanoparticles, in particular, as a function of surface carboxyl or amino group functionalisation. It was demonstrated that the luminescence of the ruthenium dye is highly affected by the ionic environment at the surface of the nanoparticle, and that these effects can be counteracted by encapsulating the ruthenium-functionalised nanoparticles in a plain 15 nm silica layer. Moreover, the ruthenium-functionalised silica nanoparticles showed high relative brightness compared to the free dye in solution and efficient functionalisation with amino or carboxyl groups. Due to their ease of fabrication and attractive characteristics, the ruthenium-functionalised silica nanoparticles described here have the potential to be highly desirable fluorescent labels, particularly, for biological applications.  相似文献   

10.
Fluorescent nanoparticles have a variety of biomedical applications as diagnostics and traceable drug delivery agents. Highly fluorescent porous silica nanoparticles were synthesized in a water/oil phase by a microemulsion method. What is unique about the resulting porous silica nanoparticles is the combination of a single-step, efficient synthesis and the high stability of its fluorescence emission in the resulting materials. The key of the success of this approach is the choice of a lipid dye that functions as a surrogate surfactant in the preparation. The surfactant dye was incorporated at the interface of the inorganic silica matrix and organic environment (pore template), and thus insures the stability of the dye?Csilica hybrid structure. The resulting fluorescent silica materials have a number of properties that make them attractive for biomedical applications: the availability of various color of the resulting nanoparticle from among a broad spectrum of commercially dyes, the controllablity of pore size (diameters of ~5?nm) and particle size (diameters of ~40?nm) by adjusting template monomer concentration and the water/oil ratio, and the stability and durability of particle fluorescence because of the deep insertion of surfactant??s tail into the silica matrix.  相似文献   

11.
以二苯甲酰甲烷(DBM)、邻菲罗琳(phen)和丙烯酸(AA)为配体,制备了铕的配合物Eu(Ⅲ)(DBM)2-(phen)(AA).利用St(o)ber法合成了SiO2纳米粒.通过超声辅助,将脂溶性的强荧光铕配合物吸附到SiO2纳米粒上,再包覆阳离子聚电解质聚二烯丙基二甲基氯化铵(PDAC)和阴离子聚电解质聚丙烯酸(P...  相似文献   

12.
Luminescent core-shell europium(III)-silica nanoparticles were prepared using europium(III) chelate core structure and polyvinylpyrrolidone synthesis strategy for silica shell. Europium(III):naphtoyltrifluoroacetone:trioctylphosphineoxide complex was spontaneously agglomerated from organic solvent to water. Polyvinylpyrrolidone was adsorbed onto the core structure and stable silica shell was synthesized using tetraethylorthosilicate. Nanosized particles with a diameter of 71 ± 5 nm and 11 nm shell thickness were obtained with fluorescence decay rate of 517 μs and excitation and emission wavelengths of 334 and 614 nm, respectively.  相似文献   

13.
In this paper, a simple synthesis method of small-size( about 50 nm in diameter), high magnetic and fluorescent bi-functional silica composite nanoparticles were developed, in which water-soluble Fe3O4 magnetic nanoparticlels (MNs) and CdTe quantum dots (QDs) were directly incorporated into a silica shell by reverse microemulsion method. The high luminescent QDs can be used as luminescent marker, while the high magnetic MNs allow the manipulation of the bi-functional silica composite nanoparticles by external magnetic field. Poly (dimethyldiallyl ammonium chloride) was used to balance the electrostatic repulsion between CdTe QDs and silica intermediates to enhance the fluorescence intensity of MNs-QDs/SiO2 composite nanoparticles. The optical property, magnetic property, size characterization of the bi-functional composite nanoparticles were studied by UV-Vis and PL emission spectra, VSM, TEM, SEM. The stabilities toward time, pH and ionic strength and the effect of MNs on the fluorescence properties of bi-functional silica composite nanoparticles were also studied in detail. By modifying the surface of MNs-QDs/SiO2 composite nanoparticles with amino and methylphosphonate groups, biologically functionalized and monodisperse MNs-QDs/SiO2composite nanoparticles can be obtained. In this work, bi-functional composite nanoparticles were conjugated with FITC labeled goat anti-rabbit IgG, to generate novel fluorescent-magnetic-biotargeting tri-functional composite nanoparticles, which can be used in a number of biomedical application.  相似文献   

14.
Rice selenium-containing peptide TSeMMM (T) with immunomodulatory functions was isolated from selenium-enriched rice protein hydrolysates. However, its biological activity is difficult to be protected in complex digestive environments. In this study, T was encapsulated within zein and gum arabian (GA) through ultrasound treatment to improve its bioactivity and bioavailability. The zein@T/GA nanoparticles were formed using ultrasonic treatment at 360 W for 5 min with a 59.9% T-encapsulation efficiency. In vitro digestion showed that the cumulative release rate of zein@T/GA nanoparticles reached a maximum of 80.69% after 6 h. In addition, short-term animal studies revealed that the nanoparticles had an effect on the levels of tissue glutathione and improved peptides’ oral bioavailability. Conclusively, these findings suggest that the ultrasonicated polysaccharide/protein system is suitable for encapsulating active small molecular peptides. Furthermore, it provides a novel foundation for studying the bioavailability of active substances in functional foods.  相似文献   

15.
To improve its anticorrosion property, aluminum pigment was encapsulated by in situ copolymerization of styrene (St) and maleic acid (MA). It was found that the conversion of monomers (C), the percentage of grafting (PG) and the grafting efficiency (GE) could attain 92%, 12%, 25%, respectively, when m(BPO)/m(St + MA) = 10% and m(St + MA)/m(Al) = 10%. The optimum condition for protection factor was studied according to an orthogonal testing. When m(St + MA)/m(Al) was 20%, the encapsulated aluminum pigment simultaneously showed good anticorrosion property and luster. FTIR, SEM and particle size analysis indicated that aluminum pigment had been successfully encapsulated with styrene-maleic acid copolymer by in situ copolymerization, which remarkably improved its anticorrosion property and the chelate complex formed between SMA and Al(III) was possibly the actual corrosion inhibitor.  相似文献   

16.
Protein immobilization in mesoporous silica nanoparticles has attracted much attention due to its wide range of applications. However, it remains largely unexplored how the use of mesopores can alter the spatial distribution of encapsulated biomolecules so as to improve pulsed dipolar spectroscopy sensitivity. Here, we performed electron spin resonance measurements for three different spin-labeled biomolecules (including two different peptides and a protein) encapsulated in various types of mesoporous materials differing in textural properties such as nanochannel length (e.g., 0.2–4 μm) and average pore diameter (e.g., 6–11 nm, approximately). Our results show that biomolecules are clustered somewhat upon the encapsulation into mesopores, and that due to the clustering, instantaneous diffusion plays an important role in the spin relaxation in nanochannels. The extent of molecular clustering exhibits a clear positive correlation with the length of nanochannels, whereas it shows little correlation with pore diameters. Among the materials studied, mesoporous materials with the shortest length of nanochannels are most effective to reduce spin clustering, thus suppressing the unwanted instantaneous diffusion and enhancing spin–spin relaxation time. This study has opened a possibility of improving the quality of pulsed dipolar spectroscopy with mesoporous silica nanoparticles.  相似文献   

17.
In this study, FG beads (ferrite nanoparticles in the core covered with poly-(styrene-co-glycidyl methacrylate)) were made into fluorescent magnetic carriers (FMCs) containing the fluorescent substance, europium ion (Eu3+) complex. The developed FMCs showed several notable features such as high fluorescence intensity and high dispersibility in water. More importantly, FMCs did not leak Eu3+ complex. It is expected that the FMCs will be a useful tool for biomolecular recognition and imaging and contribute to advancement of a wide range of research fields, including cell biology and molecular imaging.  相似文献   

18.
A new fluorescent probe 3, has been developed for the detection of Fe(III) in water based samples. The design of 3 involved the incorporation of Fe(III) binding sites observed in naturally occurring Siderophores into a synthetic sensing assembly. The probe, containing two Schiff base receptors connected to a mesitylene platform, was prepared in two steps. The dipodal sensor displayed good selectivity for Fe(III) when tested against other physiological and environmentally important metal ions, in HEPES buffered solution at pH 7.0, through a quenching of the fluorescent intensity. Stern-Volmer analysis of this quenching interaction indicated a 1:1 (host : guest) binding stoichiometry between the probe and Fe(III). The association constant, K a calculated using the Benesi-Hildebrand equation was found to be 3.8 × 104 M−1. Crucially, the sensor was capable of measuring Fe(III) competitively in solutions containing both Fe(III) and Cu(II). Thus, the adoption of Fe(III) binding sites found in nature, into synthetic luminescent assemblies has proven an effective design strategy for the development of new Fe(III) probes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
采用溶胶-凝胶法,首先利用苯乙烯与3-甲基丙烯酰氧基丙基三甲氧基硅烷(KH-570)化学反应合成共聚前驱物,利用TEOS在一定的条件下水解与缩合,一步合成了有机-无机复合纳米微球。用扫描电镜、红外光谱对共聚物及复合纳米粒子进行了表征。将非水溶性发光材料四苯基卟啉掺杂其中,制备出荧光复合纳米粒子。该粒子表现出了良好的发光性能,染料泄漏与猝灭几乎为零,可以作为一种新型的高效率的生物标记材料。  相似文献   

20.
Nanosilicas (A-50, A-300, A-500)/activated carbon (AC, SBET = 1520 m2/g) composites were prepared using short-term (5 min) mechanochemical activation (MCA) of powder mixtures in a microbreaker. Smaller silica nanoparticles of A-500 (average diameter dav = 5.5 nm) can more easily penetrate into broad mesopores and macropores of AC microparticles than larger nanoparticles of A-50 (dav = 52.4 nm) or A-300 (dav = 8.1 nm). After MCA of silica/AC, nanopores of non-broken AC nanoparticles remained accessible for adsorbed N2 molecules. According to ultra-soft X-ray emission spectra (USXES), MCA of silica/AC caused formation of chemical bonds Si-O-C; however, Si-C and Si-Si bonds were practically not formed. A decrease in intensity of OKα band in respect to CKα band of silica/AC composites with diminishing sizes of silica nanoparticles is due to both changes in the surface structure of particles and penetration of a greater number of silica nanoparticles into broad pores of AC microparticles and restriction of penetration depth of exciting electron beam into the AC particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号