首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A lead-free Ba(1?x)CaxTi(1?y)ZryO3 (BCZT) single crystal (x=0.08, y=0.26) was grown by the Czochralski (CZ) method in a mixed flux of TiO2 and ZrO2. The composition of as-grown BCZT was analyzed by electron probe micro-analysis. The structure, dielectric properties and phase transition were investigated at different temperatures. The X-ray diffraction results confirmed that the structure of the as-grown BCZT crystal was cubic both at 25 °C and 500 °C. The temperature dependence of the dielectric constant and Raman spectra characterization revealed that there was a phase transition from cubic to tetragonal, which happened between 200 K and 250 K. With increasing frequency, the Curie temperature shifted towards high temperature.  相似文献   

2.
《Journal of Non》2007,353(47-51):4384-4389
Lithium manganese spinels Li1+xMn2−xO4, 0  x  0.33, were prepared by wet chemistry technique followed by heat-treatment at 750 °C or 800 °C. Differential scanning calorimetry was used to reveal phase transitions. Electrical properties were studied by impedance spectroscopy. LiMn2O4 exhibited phase transition below room temperature. The transition, seen as an exothermic event in DSC and a steep decrease of conductivity upon cooling, was sharp in sample sintered at 800 °C and broadened over a range of temperature in sample sintered at 750 °C. In the low temperature phase of LiMn2O4, two relaxations of similar strength were observed in the frequency dependent permittivity. The low frequency process was identified as relaxation of charge carriers since the relaxation frequency followed the same temperature dependence as the dc conductivity. The high frequency process exhibited milder temperature dependence and was attributed to dipolar relaxation in the charge-ordered structure. The dipolar relaxation was barely visible in Li substituted samples, x  0.05, which did not undergo structural phases transition. Measurements extended to liquid nitrogen temperature showed gradual lowering of the activation energy of conductivity and relaxation frequencies, behavior typical for phonon-assisted hopping of small polarons.  相似文献   

3.
ZrW2O8 is known for its isotropic negative thermal expansion over a wide of range of temperature from ?272 to 777 °C. However, ZrW2O8 melts incongruently at 1257 °C and is stable only over a short temperature interval between 1105 and 1257 °C. This makes the growth of single crystals a formidable challenge. In order to study the intrinsic properties of this compound, a repeatable, viable single crystal growth strategy is required. Here we report a simple, self-seeding, self-fluxing single crystal growth process which resulted in single crystals of ZrW2O8 up to about 4 mm in size. Grown crystals were characterized by X-ray diffraction (XRD), Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. Mechanical properties of the crystals were studied using nanoindentation.  相似文献   

4.
《Journal of Non》2006,352(32-35):3391-3397
Niobium phosphate glasses with composition 37P2O5 · 23K2O · 40Nb2O5 are stable in relation to crystallization during the heating process, exhibit a low critical cooling rate, and are potentially good for nuclear wasteforms. The crystallization of these glasses was evaluated by optical microscopy after proper heat treatments, showing that surface crystallization is the main process occurring during the heat treatment. Two main crystalline phases were observed. These crystalline phases were KNb3O8 and K3NbP2O9. Surface crystal growth rates were measured in the temperature range of 806–972 °C (Tg = 683 °C) for both crystalline phases. Apparent crystallization enthalpies were determined through the Arrhenius plots of lnU vs. 1/T. The enthalpies are 496 kJ/mol and 513 kJ/mol for each crystalline phase, respectively. The surface density of nucleation sites (Ns) on 3 μm diamond paste polished surfaces is (2.4 ± 0.7) × 108 nuclei/m2 for one crystalline phase and (9.8 ± 0.8) × 109 nuclei/m2 for the other crystalline phase, when revealed at 838 °C/17.5 h, and these values show a slight variation depending on the time and the temperature. At the tested temperatures, only one crystal phase appeared inside the volume, and a volume density of nucleation sites Nv = 5 × 106 nuclei/m3 was measured.  相似文献   

5.
We measured and collected literature data for the crystal growth rate, u(T), of μ-cordierite (2MgO · 2Al2O3 · 5SiO2) and diopside (CaO · MgO · 2SiO2) in their isochemical glass forming melts. The data cover exceptionally wide temperature ranges, i.e. 800–1350 °C for cordierite and 750–1378 °C for diopside. The maximum of u(T) occurs at about 1250 °C for both systems. A smooth shoulder is observed around 970 °C for μ-cordierite. Based on measured and collected viscosity data, we fitted u(T) using standard crystal growth models. For diopside, the experimental u(T) fits well to the 2D surface nucleation model and also to the screw dislocation growth mechanism. However, the screw dislocation model yields parameters of more significant physical meaning. For cordierite, these two models also describe the experimental growth rates. However, the best fittings of u(T) including the observed shoulder, were attained for a combined mechanism, assuming that the melt/crystal interface growing from screw dislocations is additionally roughened by superimposed 2D surface nucleation at large undercoolings, starting at a temperature around the shoulder. The good fittings indicate that viscosity can be used to assess the transport mechanism that determines crystal growth in these two systems, from the melting point Tm down to about Tg, with no sign of a breakdown of the Stokes–Einstein/Eyring equation.  相似文献   

6.
Glasses of the xEu2O3 · (100?x)[2Bi2O3 · B2O3] system with 0 ? x ? 25 mol% have been characterized by X-ray diffraction and FTIR spectroscopy measurements. Melting at 1100 °C and the rapid cooling at room temperature permitted us to obtain glass samples. In order to improve the local order and to develop crystalline phases, the glass samples were kept at 625 °C for 24 h. After heat treatment two crystalline phases were put into evidence. One of the crystalline phases was observed for the host glass matrix, the x = 0 mol% sample, and belongs to the cubic system. The second one was observed for the x = 25 mol% sample and was find to be orthorhombic with two unit cell parameters very close to each other. For the samples with 0 < x < 25 mol% there is a mixture of the two mentioned phases. FTIR spectroscopy data suggest that both Bi2O3 and B2O3 play the glass network former role while the europium ions play the network modifier role in the studied glasses.  相似文献   

7.
《Journal of Non》2006,352(40-41):4246-4249
The (Bi0.8Pb0.2)4Sr3Ca3Cu4Ox glass, annealed under proper conditions, is transformed into a granular metal and superconductor. Oxide superconductors of the bismuth family crystallize as a result of annealing: (Bi,Pb)2Sr2CuOx (2201, Tc = 10 K), (Bi,Pb)2Sr2CaCu2Ox (2212, Tc = 85 K) and (Bi,Pb)2Sr2Ca2Cu3Ox (2223, Tc = 100 K). (Bi0.8Pb0.2)4Sr3Ca3Cu4Ox glass–ceramic samples were obtained by annealing an amorphous solid at temperatures between 650 °C and 870 °C. The temperature dependence of resistivity in annealed samples was measured with the conventional four-terminal method in the temperature range from 3 K to 300 K. The (Bi0.8Pb0.2)4Sr3Ca3Cu4Ox glass–ceramics may be considered as a disordered metal and superconductor. The material has high resistivity and a high, usually negative, temperature coefficient of resistivity (TCR). Its granular and disordered character is also reflected in its superconducting properties. The normal-state and superconducting properties are correlated.  相似文献   

8.
A new borate single crystal of Sr3Tb(BO3)3 with dimension Ф20×25 mm2 has been grown by the Czochralski method. The grown crystal was characterized by DTA–TGA, FTIR and X-ray powder diffraction analysis. The results showed the crystal with [BO3]3? is congruently melting at 1351.35 °C which belongs to hexagonal structure. The hardness of Sr3Tb(BO3)3 crystal is 422.5 VDH, and is equal to 5.0 moh. The thermal expansion coefficients were determined to be 2.08×10?5/°C along (1 0 0) direction and 7.43×10?6/°C along (0 0 1) direction and the transmission spectrum was measured in 320–1800 nm at room temperature. The magnetic properties of the single crystal were studied which showed its paramagnetism and magnetic anisotropy. The specific Faraday rotation of single crystal was measured at room temperature in 532, 633, and 1064 nm wavelength. The Verdet constants and magneto-optical figures of merit were investigated. The primary emphasis is laid to explore a new magneto-optical material, all the magneto-optical properties of Sr3Tb(BO3)3 are comparing to the ones of TGG.  相似文献   

9.
AgGaxIn1?xSe2 single crystals with x=0.4 have been grown by the horizontal Bridgman technique for nonlinear optical application requires phase matching. High purity polycrystalline synthesis of AgGaxIn1?xSe2 was carried out at 850 °C, which is a relatively lower temperature compared to those in earlier reports, thus reducing secondary phase formation. An average Ga:In ratio of 62:38 (±3%) was measured using energy dispersive spectroscopy (EDS). As grown, a single crystal shows very high IR transmission of ~65% in the spectral range of 4000–600 cm?1. There was no significant change in its IR transmission after annealing it at 500 °C for 20 days in vacuum in the presence of AgGaxIn1?xSe2 powder. This indicates a low concentration of defects in the crystal. The results demonstrate that the improved new synthesis method for crystal growth was promising and that the quality of the crystal was good.  相似文献   

10.
《Journal of Non》2005,351(43-45):3503-3507
Lead-free glasses in the SiO2–B2O3–Bi2O3–ZnO quaternary system were studied. The glass formation region, as determined by XRD patterns of bulk samples, was limited to glasses having more than 40 mol% of the glass-forming oxides SiO2 and B2O3. Crystalline phases of Zn2SiO4 (willemite) were detected in compositions of 30SiO2 · 10B2O3 · 20Bi2O3 · 40ZnO and 20SiO2 · 10B2O3 · 25Bi2O3 · 45ZnO. Glass transition temperatures (Tg), dilatometric softening points (Td) and linear coefficients of expansion in the temperatures range of 25–300 °C (α25–300) were measured for subsystems along the B2O3 join of 10, 20 and 30 mol%. For these subsystems, Tg ranged from 411 to 522 °C, and Td ranged from 453 to 563 °C, both decreasing with increasing Bi2O3 content. The measured α25–300 ranged from 53 to 95 × 10−7 °C−1, with values increasing with increasing Bi2O3 content. The ZnO content had the opposite effect to the Bi2O3 content. It appears that Bi3+ acts as a glass-modifier in this quaternary system.  相似文献   

11.
C.Y. Lam  K.H. Wong 《Journal of Non》2008,354(35-39):4262-4266
Mn-doped cuprous oxide Cu2?xMnxO (CMO), where x = 0.03, is a p-type diluted magnetic semiconductor (DMS) with Curie temperature above room temperature [M. Wei, N. Braddon, et al., Appl. Phys. Lett. 86 (2005) 0725141; Y.L. Liu, S. Harrington, et al., Appl. Phys. Lett. 87 (2005) 222108]. We have grown CMO (x = 0.03) thin films of about 200 nm thick on n-type semiconducting (0 0 1)Nb–SrTiO3(NSTO) single crystal substrates by pulsed laser deposition. Cubic crystalline phases of CMO layers were obtained in a narrow deposition pressure window of about 20 mTorr at growth temperature of 650 °C. X-ray diffraction and TEM studies of these heterostructures reveal a cube-on-cube epitaxial relationship of [CMO]001/[NSTO]001. All the oxide p–n junctions with the size of 500 × 500 μm were fabricated by the shadow masking technique. These junctions show highly asymmetric IV characteristics. The rectification ratio at room temperature is about 103 at ±2 V. Leakage current density of 10?4 A cm?2 at ?1 V is observed. No apparent junction breakdown is recorded at reverse bias voltages down to ?5 V. From the 1/C2V plots, the forward bias turn on voltage is ~1.4 V. Clear junction current rectifying property is maintained at up to 200 °C. Our results have demonstrated that epitaxial CMO films can be fabricated on lattice matched cubic substrates. They are suitable DMS for above room temperature spintronic junction applications.  相似文献   

12.
Bioactive glass ceramics (BGCs) have different rates of biodegradation and mechanical properties depending on their chemical compositions and sintering temperatures. The present study was aimed to develop the boron-rich, phosphorus-low CaO–SiO2–P2O5–B2O3 bioactive glasses (BG-Bx, X = 0, 10, 20) potentially for improving the mechanical properties of BGCs via low-temperature co-fired process. The B2O3-free BG-B0 shrunk well at ~ 726 °C and melted at over 1050 °C, while the onset shrinking and melting temperatures of the 20 mol% B2O3-doped BG-B20 was lowered to ~ 648 °C and ~ 952 °C, respectively. The BG-B20 thermally treated at 850–950 °C was transformed into wollastonite and calcium borate, and crystallization decreased the kinetics but did not inhibit the development of hydroxyapatite on their powder and disc surface when immersed in simulated body fluid. The in vitro degradation in Tris buffer confirmed that the degradation rate markedly increased with increasing boron content in BG-Bx. The compressive strength and flexural strength of the 10% BG-B20-reinforced 45S5 porous BGC sintered at 850 °C was nearly four times than that of 45S5 porous constructs. These studies suggest that the boron-rich, phosphorus-low CaO–SiO2–P2O5–B2O3 system is a promising biomaterial and potential low temperature co-fired aid for improving the mechanical and biological properties of porous BGCs.  相似文献   

13.
《Journal of Non》2007,353(52-54):4819-4822
The Li2Al2Si3O10 glass-ceramics well crystallized and with a regular morphology was produced starting from a mixture of Li2CO3, TiO2, Al2O3 and coal bottom ash, after reducing the magnetite phase content. Its measured thermal expansion coefficient in the temperatures range from 25 °C to 300 °C is α(25–300) = −23.4 × 10−7 °C−1. This value is ≈18% smaller than that for the commercial lithium glass-ceramics (−23.4 × 10−7 °C−1 to 50 × 10−7 °C−1).  相似文献   

14.
We studied the effect of Dy3+ content on the magnetic properties of cobalt ferrite single crystal. The single crystals of CoFe1.9Dy0.1O4 were grown by the flux method using Na2B4O7.10 H2O (Borax) as a solvent (flux). The black and shiny single crystals were obtained as a product. The X-ray diffraction analysis at room temperature confirmed the spinel cubic structure with lattice constant a=8.42 Å of the single crystals. The compositional analysis endorses the presence of constituents Co, Fe and Dy elements after sintering at 1300 °C within the final structure. The magnetic hysteresis measurements at various temperatures viz. 10 K, 100 K, 200 K and 300 K reveal the soft ferrimagnetic nature of the single crystal than that of for pure CoFe2O4. The observed saturation magnetization (Ms) and coercivity (Hc) are found to be lower than that of pure CoFe2O4 single crystal. The magnetostriction (λ) measurement was carried out along the [001] direction. The magnetic measurements lead to conclude that the present single crystals can be used for magneto-optic recording media.  相似文献   

15.
《Journal of Non》2006,352(38-39):4062-4068
Glasses with the base composition 16Na2O · 10CaO · 74SiO2 doped with copper and iron or copper and manganese were studied by high temperature UV–vis–NIR spectroscopy. The spectra exhibited distinct absorption bands attributed to the respective transition metal ions present (Cu2+, Fe2+, Fe3+, Mn3+). In glasses doped with only one polyvalent element, the absorption decreases linearly with increasing temperature, the absorption bands are shifted to smaller wave numbers and get broader. In glasses doped with two types of transition metals, the situation is the same up to a temperature of around 550 °C. At larger temperature, the Cu2+-absorption in glasses also co-doped with iron increases again, while in glasses doped with both copper and manganese the absorption is approximately the same as in glasses solely doped with copper. It is shown that this is due to redox reactions between polyvalent species. These reactions are frozen in at temperatures <550 °C.  相似文献   

16.
For comprehensive understanding, the crystallographic out-of-plane axis transition for YBa2Cu3O7?δ (YBCO or Y123) films grown on (110) NdGaO3 (NGO) substrate, using liquid phase epitaxy (LPE), was systematically investigated via changing flux composition, processing temperature and oxygen partial pressure. It is found that LPE films could grow, remarkably, in a wide temperature range between 24 K above and 25 K below the peritectic temperature (Tp). The unpredicted c-oriented films formed at the temperatures above Tp, is deduced to be attributed to the etch-back behavior, i.e., Nd partially dissolved from the NGO substrate into solution, which leads to a locally high supersaturation for facilitating film growth. Even more distinctively, decreasing from the high temperature in this wide range, the YBCO films characteristically experienced the orientation transitions, the double transition of the c-axis oriented→a/c-axis mixed→c-axis oriented in air, and a single evolution of the c-axis→a-axis in the pure oxygen atmosphere. By combining supersaturation with the NGO etch-back, and solute diffusion, the transition origin of the film orientation in various temperature regions was clarified.  相似文献   

17.
A transparent glass with the composition 60B2O3–30Li2O–10Nb2O5 (mol%) was prepared by the melt quenching technique. The glass was heat-treated with and without the application of an external electric field. The as-prepared sample was heat-treated (HT) at 450, 500 and 550 °C and thermoelectric treated (TET) at 500 °C. The following electric fields were used: 50 kV/m and 100 kV/m. Differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman, dc and ac conductivity, as a function of temperature, were used to investigate the glass and glass-ceramics properties. LiNbO3 crystals were detected, by XRD, in the 500 °C HT, 550 °C HT and 500 °C TET samples. The presence of an external electric field, during the heat-treatment process, improves the formation of LiNbO3 nanocrystals at lower temperatures. However, in the 550 °C HT and in the TET samples, Li2B4O7 was also detected. The value of the σdc decreases with the rise of the applied field, during the heat-treatment. This behavior can indicate an increase in the fraction of the LiNbO3 crystallites present in these glass samples. The dc and ac conduction processes show dependence on the number of the ions inserted in the glass as network modifiers.The Raman analysis suggests that the niobium ions are, probably, inserted in the glass matrix as network formers.These results reflect the decisive effect of temperature and electric field applied during the thermoelectric treatment in the structure and electric properties of glass-ceramics.  相似文献   

18.
19.
《Journal of Non》2005,351(43-45):3483-3489
Glasses in the system BaO/Al2O3/B2O3 with and without the addition of platinum were melted. In one sample series, the BaO-concentration was varied while the ratio [Al2O3]/[B2O3] was kept constant. In another sample series, the [BaO]/[Al2O3]-ratio (= 0.9) was kept constant and the B2O3 concentration was varied. The samples were thermally treated at 720 °C for 24 h and subsequently at 780 °C for 4 h. In most thermally treated samples, the crystalline phase BaO · Al2O3 · B2O3 occurred. At some compositions, the platinum-doped samples showed larger concentrations of the crystalline phases. The most remarkable property of the obtained glass–ceramics is their zero or negative thermal expansion coefficient. Here, notable differences were observed: samples with fine grained microstructures showed thermal expansion coefficients approximately zero up to temperatures of around 80 °C. By contrast, samples with coarser microstructures and large spheroidal crystals exhibit negative expansion coefficients up to temperatures of around 280–375 °C. The thermal expansions of these samples were close to those of the mean thermal expansion of the unit cell of the BaO · Al2O3 · B2O3 phase. The thermal expansion of the fine grained samples was approximately equal to that of the crystallographic a-axis of the BaO · Al2O3 · B2O3 phase.  相似文献   

20.
《Journal of Crystal Growth》1999,196(2-4):332-343
Chicken egg white lysozyme has been found to crystallize from ammonium, sodium, potassium, rubidium, magnesium, and manganese sulfates at acidic and basic pH, with protein concentrations from 60 to 190 mg/ml. Crystals have also been grown at 4°C in the absence of any other added salts using isoionic lysozyme which was titrated to pH 4.6 with dilute sulfuric acid. Four different crystal forms have been obtained, depending upon the temperature, protein concentration, and precipitating salt employed. Crystals grown at 15°C were generally tetragonal, with space group P43212. Crystallization at 20°C typically resulted in the formation of orthorhombic crystals, space group P212121. The tetragonal ↔ orthorhombic transition appeared to be a function of both the temperature and protein concentration, occurring between 15 and 20°C and between 100 and 125 mg/ml protein concentration. Crystallization from 1.2 M magnesium sulfate at pH 7.8 gave a trigonal crystal, space group P3121, a=b=87.4, c=73.7, γ=120°, which diffracted to 2.8 Å. Crystallization from ammonium sulfate at pH 4.6, generally at lower temperatures, was also found to result in a monoclinic form, space group C2, a=65.6, b=95.0, c=41.2, β=119.2°. A crystal of ∼0.2×0.2×0.5 mm grown from bulk solution diffracted to ∼3.5 Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号