首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel 4-(2-dimethylaminoethyloxy)-N-octadecyl-1,8-naphthalimide (DON) has been synthesized as a spectrofluorimetric probe for the determination of proteins. Photophysics of DON in different solvents has been delineated in this paper. Progressive redshift with polarity of solvents in emission and absorption spectra hints at intramolecular charge transfer. The interactions of DON with serum albumins (i.e., human serum albumin (HSA) and bovine serum albumin (BSA)) were studied by fluorescence and absorption spectroscopy. Fluorescence data revealed that the quenching of HSA/BSA by DON were static quenching and the DON–HSA/BSA complexes were formed. The binding constant (Kb) for HSA and was found to be 8.44×10?4 and 60.26×10?4 M?1 and the number of binding sites (n) were 1.00 and 1.40, respectively. The thermodynamic parameters, ΔH and ΔS, for the DON–HSA system was calculated to be ?14.83 kJ mol?1 and 23.61 J mol?1 K?1, indicating the hydrogen bonds and hydrophobic interactions were the dominant intermolecular force. ΔH and ΔS for the binding of DON with BSA was ?60.08 kJ mol?1 and ?90.7441 mol?1 K?1, suggesting the hydrogen bonds and van der Waals force played the main role in the interaction. The results of displacement experiments showed that DON bound HSA/BSA occurred at the Trp-214 proximity, located in subdomain IIA of the serum albumin structure (the warfarin binding pocket). The effect of DON on the conformation of HSA was also analyzed by synchronous and three-dimensional fluorescence spectra. The fluorescence of DON could be quenched by HSA, based on which, a fluorometric method for the determination of microamount protein using DON in the medium of HCl?Tris buffer solution (pH=7.4) was developed. The linear range of the calibration curves was 0.1–10.0 μM for HSA, 0.1–11.2 μM for BSA and 0.2–9.7 μM for egg albumin (EA). The detection limit (3σ) for HSA was 1.12×10?10 M, for BSA it was 0.92×10?10 M and for EA it was 4.33×10?10 M. The effect of metal cations on the fluorescence spectra of DON in ethanol was also investigated. The method has been applied to detect the total proteins in human serum samples and the results were in good agreement with those reported by the hospital.  相似文献   

2.
The interactions of silymarin with bovine serum albumin (BSA) and lysozyme (LYS) were investigated in physiological buffer (pH = 7.4) by fluorescence spectroscopy and UV–vis absorption spectroscopy. The mechanism study indicated that silymarin could strongly quench the intrinsic fluorescence of BSA and LYS through static quenching procedures. At 291 K, the values of the binding constant KA were 4.20×104 and 4.71×104 L mol?1 for silymarin–BSA and silymarin–LYS, respectively. Using thermodynamic equations, the conclusion that hydrophobic and electrostatic forces played an important role in stabilizing complex of silymarin–BSA or silymarin–LYS was obtained. The effects of Cu2+, Mg2+, Ca2+, Fe2+, and Fe3+ on the binding were also studied at 291 K. According to Förster’s nonradiative energy transfer theory, the distances r0 between donor and acceptor were calculated to be 3.36 and 2.71 nm for silymarin–BSA and silymarin–LYS, respectively. Synchronous fluorescence spectra showed that the conformation of BSA and LYS were changed by silymarin.  相似文献   

3.
The three flavonoids including naringenin, hesperetin and apigenin binding to bovine serum albumin (BSA) at pH 7.4 was studied by fluorescence quenching, synchronous fluorescence and UV–vis absorption spectroscopic techniques. The results obtained revealed that naringenin, hesperetin and apigenin strongly quenched the intrinsic fluorescence of BSA. The Stern–Volmer curves suggested that these quenching processes were all static quenching processes. At 291 K, the value and the order of the binding constant were KA (naringenin)=4.08×104<KA (hesperetin)=5.40×104KA (apigenin)=5.32×104 L mol?1. The main binding force between the flavonoid and BSA was hydrophobic and electrostatic force. According to the Förster theory of non-radiation energy transfer, the binding distances (r0) were obtained as 3.36, 3.47 and 3.30 nm for naringenin–BSA, hesperetin–BSA and apigenin–BSA, respectively. The effect of some common ions such as Fe3+, Cu2+, Mg2+, Mn2+, Zn2+ and Ca2+ on the binding was also studied in detail. The competition binding was also performed. The apparent binding constant (KA) obtained suggested that one flavonoid had an obvious effect on the binding of another flavonoid to protein when they coexisted in BSA solution.  相似文献   

4.
Compared to the fluorescence spectra of warfarin in pure ethanol and in the presence of the nonionic surfactant Tergitol 15-S-7 after cloud point extraction (CPE), it can be seen that the fluorescence emission peak underwent an obvious red shift and the fluorescence intensity of warfarin was significantly increased in the presence of Tergitol 15-S-7. In order to confirm Tergitol 15-S-7-induced supramolecular effects, the investigations on the fluorescence quantum yields of warfarin in the micellar medium and pure ethanol were performed. The experimental results showed that the supramolecular interactions between Tergitol 15-S-7 and the warfarin excimers played a key role for improving the warfarin fluorescence properties.Based on these facts, a simple fluorometric method combined with CPE for the determination of trace warfarin was developed for the first time. Under optimized experimental conditions, the linear concentration range for warfarin was 3.0×1.0?9–1.0×10?6 mol L?1 and the detection limit was 3.3×10?10 mol L?1. And, the proposed method was approved to be appropriate for monitoring warfarin in actual pharmaceutical formulations and biological fluid samples by recovery test, in comparison with other reported methods being satisfactory.  相似文献   

5.
Fluorescence spectra, absorption spectra, melting temperature, ionic strength effect, and viscosity experiments were described that characterize the interaction of eugenol with salmon sperm DNA in vitro. Eugenol was found to bind but weakly to DNA, with binding constants of 4.23×103, 3.62×103 and 2.47×103 L mol?1 at 18, 28 and 38 °C respectively. The Stern–Volmer plots at different temperatures suggested that the quenching type of fluorescence of eugenol by DNA was a static quenching. Both the relative viscosity and the melting temperature of DNA were increased by the addition of eugenol. The changes of ionic strength had no affect on the binding. In addition, the binding constant of eugenol with single stranded DNA (ssDNA) was larger than that of eugenol with double stranded DNA (dsDNA). These results revealed that the binding mode of eugenol to DNA was intercalative binding. The thermodynamic parameters ΔH, ΔG and ΔS were also obtained according to the Van't Hoff equations, which suggested that hydrogen bond or van der Waals force might play an important role in a binding of eugenol to DNA. Based on the theory of the Förster energy transference, the binding distance between DNA and eugenol was determined as 4.40 nm, indicating that the static fluorescence quenching of eugenol by DNA was also a non-radiation energy transfer process.  相似文献   

6.
Time resolved spectroscopy was applied to a real time investigation of chemical reaction of quercetin (5.0 × 10? 5 mol L? 1) with various concentrations of sodium hydroxide (from 5.0 × 10? 3 to 1.0 mol L? 1). The UV–vis absorption spectra acquired first reveal that there was an intermediate product with an absorption band centered at 427 nm formed during the reaction. The rates of chemical changes for quercetin in basic medium are also first obtained by the present work. The transient spectral information obtained is valuable for understanding the molecular mechanism of the reaction between quercetin and sodium hydroxide.  相似文献   

7.
The binding interaction between mangiferin (MGF), which a natural xanthone isolated from mangoes, and bovine serum albumin (BSA) was studied with absorbance and fluorescence spectroscopy, cyclic voltammetry and molecular modeling. The data were analyzed to assess the binding mechanism, effect of pH and ionic strength, conformational changes in the protein and electrical charge transfer involved. The MGF–BSA complex exhibited positive cooperativity with a 1:1 stoichiometry (Kd=0.38 mmol L?1) for the first binding site and a non-saturable binding at high ligand concentrations. Furthermore, the data also suggest an increase in drug bioavailability in the acidic region and relatively low ionic strength values, which are close to physiological levels. The data suggest a specific electrostatic interaction together with hydrophobic effects and H-bonding displayed in MGF binding to the BSA IIA subdomain. Synchronous fluorescence spectra indicate that there are conformational changes in the polypeptide backbone upon ligand binding. Cyclic voltammetry indicates that there is an irreversible charge transfer between MGF and BSA that is modulated by diffusion on the electrode surface, where two electrons are transferred. These results can help the knowledge of the pharmacokinetic activities of natural or chemical xanthone-based drugs.  相似文献   

8.
Highly luminescent complexes of Eu and Tb ions with norfloxacin (NFLX) and gatifloxacin (GFLX) were prepared in sol–gel matrix. The red and green emissions of Eu and Tb ions were obtained by the energy transfer from the triplet state of (NFLX) and (GFLX) to the excited emitting states (5D0 and 5D4) of Eu and Tb, respectively. The intensity of the electric field emission bands (5D07F2, 617 nm and 5D47F5, 545 nm) of Eu and Tb ions were proportional to the concentration of (NFLX at pH 6.0) and (GFLX at pH 3.5) in acetonitrile with excitation wavelengths (λex) (340 and 395) and (370 and 350 nm) for Eu and Tb ions, respectively. The monitored luminescence intensity of the system showed a good linear relationship with the concentration of NFLX within a range of 5×10?9–5.8×10?6 and 5×10?8–1.0×10?6 mol L?1 with a correlation coefficient of 0.990, and for GFLX within a range of 2.4×10?9–3.2×10?5 and 5×10?8–8.0×10?6 mol L?1 with a correlation coefficient of 0.995. The detection limit (LOD) was determined as 3.0×10?9 and 1.0×10?8 mol L?1 for NFLX and 1.6×10?10 and 2.0×10?8mol L?1 for GFLX. The limit of quantification (LOQ) is 9×10?9 and 3.0×10?8 and 4.8×10?10 and 6.0×10?8 in case of Eu and Tb, respectively.  相似文献   

9.
This paper reports on a facile technique combined with a simple, sensitive and selective spectrofluorimetric method for the determination of hydrochlorothiazide. In methanol, at pH 8.3 and λex=340, hydrochlorothiazide can remarkably enhance the luminescence intensity of the Eu3+ ion doped in polymethylmethacrylate polymer (PMMA) matrix. This could be due to the energy transfer from hydrochlorothiazide to Eu3+ in the excited stated. At the optimized experimental conditions, the enhancement of the characteristic emission band (617 nm) of Eu3+ ion doped PMMA is directly proportional to the concentration of hydrochlorothiazide with a dynamic range of 5×10?8–1.0×10?5 mol L?1 and detection limit of 8.0×10?9 mol L?1. Application of the suggested method was successfully applied to the determination of hydrochlorothiazide in pharmaceutical preparations and human serum samples, with high percentage of recovery, good accuracy and precision.  相似文献   

10.
Colistin sulfate (CS) can quench the fluorescence of bovine serum albumin (BSA) in an aqueous solution at pH 7.40. The static fluorescence-quenching process between BSA and CS was confirmed and the binding constant, the number of binding sites and thermodynamic data for the interaction between BSA and CS were also obtained. Results showed that the order of magnitude of binding constant (Ka) was 104, and the number of binding site (n) in the binary system was approximately equal to 1; electrostatic force played an important role on the conjugation reaction between BSA and CS. On the basis of the Förster theory of the resonance energy transfer, the binding distance (r) between CS and BSA was less than 7 nm. Comparing the quenching of protein fluorescence excited at 280 nm and 295 nm and from the site marker replacement experiments, it was shown that the primary CS binding site was located in the sub-domain IIA (site I) of BSA. Synchronous fluorescence spectra clearly revealed that the binding of CS with BSA can induce conformation changes in BSA. In addition, the effects of common metal ions on the binding constants of CS–BSA complex were also discussed. It was shown that, except Cu2+, the high metal ion concentrations improved the CS efficacy.  相似文献   

11.
Using high-intensity ultrasound, in situ generated α-amylase nanoparticles (NPs) were immobilized on polyethylene (PE) films. The α-amylase NP-coated PE films have been characterized by E-SEM, FTIR, DLS, XPS and RBS. The PE was reacted with HNO3 and NPs of the α-amylase were also deposited on the activated PE. The PE impregnated with α-amylase (4 μg per 1 mg PE) was used for hydrolyzing soluble potato starch to maltose. The immobilization improved the catalytic activity of α-amylase at all the reaction conditions studied. The kinetic parameters, Km (5 and 4 g L?1 for the regular and activated PE, respectively) and Vmax (5 × 10?7 mol ml?1 min?1, almost the same numbers were obtained for the regular and activated PEs) for the immobilized amylase were found to slightly favor the respective values obtained for the free enzyme (Km = 6.6 g L?1, Vmax = 3.7 × 10?7 mol ml?1 min?1). The enzyme remained bound to PE even after soaking the PE in a starch solution for 72 h and was still found to be weakly active.  相似文献   

12.
Centrin is a low molecular mass (20 KDa) protein that belongs to the EF-hand superfamily. In this work, the interaction between the Tb3+-saturated C-terminal domain of Euplotes octocarinatus centrin (Tb2-C-EoCen) and 2-p-toluidinylnaphthalene-6-sulfonate (TNS) was investigated using difference UV–vis spectra and the fluorescence spectra methods. In 100 mM N-2-hydroxy-ethylpiperazine-N-2-ethanesulfonic acid (Hepes) at pH 7.4, with the addition of Tb2-C-EoCen, four new peaks were observed at 265 nm, 278 nm, 317 nm and 360 nm by absorptivity compared with blank solution of TNS. At the same time, the reaction could be measured by fluorescence spectra. The fluorescence emission of TNS was shifted from 480 nm to 445 nm in the presence of Tb2-C-EoCen. Meanwhile, its fluorescence intensity was increased markedly. The 1:1 stoichiometric ratio of C-EoCen to TNS was confirmed by fluorescence titration curves. The conditional binding constants of TNS with C-EoCen and Tb2-C-EoCen were calculated to be log K(C-EoCen-TNS)=5.32±0.04  M?1 and log K(Tb2-C-EoCen-TNS)=5.58±0.12 M?1, respectively. In addition, the protein of Tb2-C-EoCen binding with melittin was also studied. Based on the fluorescence titration curves, the 1:1 stoichiometric ratio of Tb2-C-EoCen to melittin was confirmed. And the conditional binding constant of C-EoCen with melittin was calculated to be log Ka′=6.79±0.17 M?1.  相似文献   

13.
β-Carboline alkaloids are present in medicinal plants such as Peganum harmala L. that have been used as folk medicine in anticancer therapy. BSA1 is the major soluble protein constituent of the circulatory system, and has many physiological functions including the transport of a variety of compounds. This study is the first attempt to investigate the binding of β-carboline alkaloids to BSA by using a constant protein concentration and varying drug concentrations at pH 7.2. FTIR2 and UV–Vis3 spectroscopic methods were used to analyze the binding modes of β-carboline alkaloids, the binding constants and the effects of drug complexation on BSA stability and conformation. Spectroscopic evidence showed that β-carboline alkaloids bind BSA via hydrophobic interaction and van der Waals contacts along with H-bonding with the –NH groups, with overall binding constants of Kharmine–BSA=2.04×104 M?1, Ktryptoline–BSA=1.2×104 M?1, Kharmaline–BSA=5.04×103 M?1, Kharmane–BSA=1.41×103 M?1 and Kharmalol–BSA=1.01×103 M?1, assuming that there is one drug molecule per protein. The BSA secondary structure was altered with a major decrease of α-helix from 64% (free protein) to 59% (BSA–harmane), 56% (BSA–harmaline and BSA–harmine), 55% (BSA–tryptoline), 54% (BSA–harmalol) and β-sheet from 15% (free protein) to 6–8% upon β-carboline alkaloids complexation, inducing a partial protein destabilization.  相似文献   

14.
The interaction of tosufloxacin tosylate (TSFX) and bovine serum albumin (BSA) was studied by fluorescence spectroscopy, UV–vis spectroscopy and FT-IR spectroscopy. The results indicated that the intrinsic fluorescence of BSA was quenched by TSFX through a static quenching mechanism, and the effective binding constants (Ka) were obtained by means of the modified Stern–Volmer equation. Thermodynamic parameters showed that electrostatic interaction was mostly responsible for the binding of TSFX to BSA. The binding distance (r) between TSFX and Trp-212 was determined to be 3.90 nm according to Föster non-radiative energy transfer theory. BSA had a single class of binding site at Sudlow' site I in subdomain IIA for TSFX. The effects of TSFX on the conformation of BSA were analyzed by synchronous fluorescence spectra and three-dimensional fluorescence spectra, and the results exhibited that the hydrophobicity of tryptophan microenvironment was decreased. In FT-IR spectra, Fourier self-deconvolution, secondary derivative and the curve-fitting process were carried out to obtain the components of BSA secondary structure at 298 K and 310 K. The full basic data indicated that the presence of TSFX resulted in α-helix and β-sheet changing into β-turn and random, which displayed that TSFX induced the unfolding of the polypeptides of BSA.  相似文献   

15.
The photophysical properties such as electronic absorption, molar absorptivity, emission spectra, fluorescence quantum yield and fluorescence lifetime of N,N′-bis(4-pyridyl)-3,4:9,10-perylene bis(dicarboximide) (BPPD) have been measured in different solvents. Both electronic absorption and fluorescence spectra are not sensitive to medium polarity, while the fluorescence quantum yield (?f) is solvent dependent. The ground state geometry has been computed by using density functional theory (DFT), the transition from HOMO to LUMO from perylene core with maximum absorption at 512 nm and HOMO–LUMO energy difference equal 2.53 eV. BPPD dye undergoes molecular aggregation to dimmer or higher aggregates in dimethyl sulfoxide (DMSO). Crystalline solids of BPPD gives excimer-like emission at 676 nm. The fluorescence quenching of BPPD is also studied using hydrated ferric oxide nanoparticle (FeOOH), and the Stern–Volmer rate constants (Ksv) were calculated as 8×106 and 9.2×106 M?1 in ethanol and ethylene glycol, respectively.  相似文献   

16.
Enhanced desulfurizing flotation of low sulfur coal was investigated using sonoelectrochemical method. The supporting electrolyte used in this process was sodium chloride and the additive was anhydrous ethanol. The effects of treatment conditions on desulfurization were studied by a single-factor method. The conditions include anhydrous ethanol concentration, sodium chloride concentration, sonoelectrolytic voltage, sonoelectrolytic temperature, sonoelectrolytic time and coal sample granulometry. The optimal experimental conditions achieved for anhydrous ethanol concentration, sodium chloride concentration, sonoelectrolytic voltage, sonoelectrolytic temperature and sonoelectrolytic time are 1.7 mol L?1, 5.1 × 10?3 mol L?1, 10 V, 70 °C, 50 min achieved for a ?0.18 mm coal sample. Optimal conditions cause a sulfur reduction of up to 69.4%. The raw and treated coals were analyzed by infrared spectroscopy and a chemical method. Pyritic sulfur, organic sulfur, ash as well as moisture are partially removed. The combination of high sulfur reduction, high yield, as well as high ash reduction was obtained in the newly developed method of enhanced flotation by sonoelectrochemistry. Ultrasound irradiation promotes electron transfer efficiency and increases clean coal yield.  相似文献   

17.
Thermally stimulated current (TSC) spectra were examined for ethylene–propylene (EP) random co-polymer at different charging voltages Vp with positive and negative polarities. Observed TSC spectra showed two well-separated TSC bands, BL and BH, which respectively appeared in the temperature regions below and above 100 °C. Observed Vp dependence of BL was quite different from that of typical polypropylene homo-polymer: As Vp increased, BL band grew keeping its peak position same at 65 °C, and the band shape unchanged, as if the traps responsible for the BL band are a single set of traps with the same trap depth and capture cross section. The trap depth of BL was about 1.9 eV and 1.7 eV for positively charged EP and talc-containing EP samples, respectively. EP samples also showed unique TSC bands above 100 °C: one is a narrow TSC band peaked at 120 °C and the other is an unusual TSC band which was non-vanishing even at 165 °C just before destruction of samples by their melting. Consequently, the utmost stable charge density in EP co-polymer above 100 °C was found to be 3.5 × 10?4 C/m2 and 6.0 × 10 ?4 C/m2 for positively and negatively charged samples, respectively. These equivalent surface charge densities are much larger than those of usual polypropylene homo-polymer.  相似文献   

18.
A new spectroflurometric method for the determination of adenosine disodium triphosphate (ATP) is developed. Fluorometric interaction between ATP and enoxacin (ENX)–Eu3+ complex was studied using UV–vis and fluorescence spectroscopy. Weak luminescence spectra of Eu3+ were enhanced after complexation with ENX at 589 nm and 614 nm upon excitation at 395 nm due to energy transfer from the ligand to the lanthanide ion. It was observed that luminescence spectrum of Eu3+ was strongly enhanced further at 614 nm after incorporation of ATP into the ENX–Eu3+ complex. Under optimal conditions, the enhancement of luminescence at 614 nm was responded linearly with the concentration of ATP. The linearity was maintained in the range of 1.5×10?10–1.15×10?8 M (R=0.9973) with the limit of detection (3σ) of 4.71×10?11 M. The relative standard deviation (RSD) for 9 repeated measurements of 1×10?9  M ATP was 1.25%. Successful determinations of ATP in soil, milk, and a pharmaceutical formulation with the proposed method were demonstrated.  相似文献   

19.
Four different lipases were compared for ultrasound-mediated synthesis of the biodegradable copolymer poly-4-hydroxybutyrate-co-6-hydroxyhexanoate. The copolymerization was carried out in chloroform. Of the enzymes tested, Novozym 435 exhibited the highest copolymerization rate, in fact the reaction rate was observed to increase with about 26-fold from 30 to 50 °C (7.9 × 10?3 M s?1), sonic power intensity of 2.6 × 103 W m?2 and dissipated energy of 130.4 J ml?1. Copolymerization rates with the Candida antarctica lipase A, Candida rugosa lipase, and Lecitase Ultra? were lower at 2.4 × 10?4, 1.3 × 10?4 and 3.5 × 10?4 M s?1, respectively. The catalytic efficiency depended on the enzyme. The efficiency ranged from 4.15 × 10?3 s?1 M?1 for Novozym 435–1.48 × 10?3 s?1 M?1 for C. rugosa lipase. Depending on the enzyme and sonication intensity, the monomer conversion ranged from 8.2% to 48.5%. The sonication power, time and temperature were found to affect the rate of copolymerization. Increasing sonication power intensity from 1.9 × 103 to 4.5 × 103 W m?2 resulted in an increased in acoustic pressure (Pa) from 3.7 × 108 to 5.7 × 108 N m?2 almost 2.4–3.7 times greater than the acoustic pressure (1.5 × 108 N m?2) that is required to cause cavitation in water. A corresponding acoustic particle acceleration (a) of 9.6 × 103–1.5 × 104 m s?2 was calculated i.e. approximately 984–1500 times greater than under the action of gravity.  相似文献   

20.
Nearly 4800 features of ammonia between 6300 and 7000 cm?1 with intensities ≥4×10?24 cm?1/(molecule·cm?2) at 296 K were measured using 16 pure NH3 spectra recorded at various temperatures (296–185 K) with the McMath–Pierce Fourier Transform Spectrometer at Kitt Peak National Observatory, AZ. The line positions and intensities were retrieved by fitting individual spectra based on a Voigt line shape profile and then averaging the values to form the experimental linelist. The integrated intensity of the region was 4.68×10?19 cm?1/(molecule·cm?2) at 296 K. Empirical lower state energies were also estimated for 3567 absorption line features using line intensities retrieved from 10 spectra recorded at gas temperature between 185 and 233 K. Finally, using Ground State Combination Differences (GSCDs) and the empirical lower state energy estimates, the quantum assignments were determined for 1096 transitions in the room temperature linelist, along with empirical upper state energies for 434 levels. The assignments correspond to seven vibrational states, as confirmed from recent ab initio calculations. The resulting composite database of 14NH3 line parameters will provide experimental constraints to ab initio calculations and support remote sensing of gaseous bodies including the atmospheres of Earth, (exo)planets, brown dwarfs, and other astrophysical environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号