首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the direct boundary element method (BEM) formulation of anisotropic thermoelasticity, thermal loads manifest themselves as additional volume integral terms in the boundary integral equation (BIE). Conventionally, this requires internal cell discretisation throughout the whole domain. In this paper, the multiple reciprocity method in BEM analysis is employed to treat the general 2D thermoelasticity problem when the thermal loading is due to an internal non-uniform volume heat source. By successively performing the “volume-to-surface” integral transformation, the general formulation of the associated BIE for the problem is derived. The successful implementation of such a scheme is illustrated by three numerical examples.  相似文献   

2.
A numerical method to study three-dimensional (3D) contact problems in solids with anisotropic elastic behavior is developed in this work. This formulation is based on the Boundary Element Method (BEM) for computing the elastic influence coefficients and on projection functions over the augmented Lagrangian for contact restrictions fulfillment. The constitutive equations of the potential contact zone are Signorini’s contact conditions and Coulomb’s law of friction. The formulation uses a recently introduced explicit approach for fundamental solutions evaluation, which are valid for general anisotropic behavior meanwhile mathematical degeneracies are allowed. The accuracy and robustness of the proposed method is illustrated by solving some examples previously presented in the literature. This approach is further applied to study the influence of solids anisotropy on the contact problem.  相似文献   

3.
The authors have very recently proposed an efficient, accurate alternative scheme to numerically evaluate etc. Green’s function, U(x), and its derivatives for three-dimensional, general anisotropic elasticity. These quantities are necessary items in the formulation of the boundary element method (BEM). The scheme is based on the double Fourier series representation of the explicit, exact, algebraic solution derived by Ting and Lee (1997) [Ting, T.C.T., Lee, V.G., 1997. The three-dimensional elastostic Green’s function for general anisotropic linear elastic solid. Q. J. Mech. Appl. Math. 50, 407–426] expressed in terms of Stroh’s eigenvalues. By taking advantage of some its characteristics, the formulations in this double Fourier series approach are revised and several of the analytical expressions are re-arranged in the present study. This results in significantly fewer terms to be summed in the series thereby improving further the efficiency for evaluating the Green’s function and its derivatives. These revised Fourier series representations of U(x) and its derivatives are employed in a BEM formulation for three-dimensional linear elastostatics. Some numerical examples are presented to demonstrate the veracity of the implementation and its applicability to the elastic stress analysis of generally anisotropic solids. The results are compared with known solutions in the literature where possible, and with those obtained using the commercial finite element code ANSYS. Excellent agreement is obtained in all cases.  相似文献   

4.
This paper presents a development of the boundary contour method (BCM) for magneto-electro-elastic media. First, the divergence-free of the integrand of the magneto-electro-elastic boundary element is proved. Second, the boundary contour method formulations are obtained by introducing quadratic shape functions and Green’s functions [Ding, H.J., Jiang, A.M., 2004. A boundary integral formulation and solution for 2D problems in magneto-electro-elastic media. Computers and Structures, 82 (20–21), 1599–1607] for magneto-electro-elastic media and using the rigid body motion solution to regularize the BCM and avoid computation of the corner tensor. The BCM is applied to the problem of magneto-electro-elastic media. Finally, numerical solutions for illustrative examples are compared with exact ones. The numerical results of the BCM coincide very well with the exact solution, and the feasibility and efficiency of the method are verified.  相似文献   

5.
We will derive the fundamental generalized displacement solution, using the Radon transform, and present the direct formulation of the time-harmonic boundary element method (BEM) for the two-dimensional general piezoelectric solids. The fundamental solution consists of the static singular and the dynamics regular parts; the former, evaluated analytically, is the fundamental solution for the static problem and the latter is given by a line integral along the unit circle. The static BEM is a component of the time-harmonic BEM, which is formulated following the physical interpretation of Somigliana’s identity in terms of the fundamental generalized line force and dislocation solutions obtained through the Stroh–Lekhnitskii (SL) formalism. The time-harmonic BEM is obtained by adding the boundary integrals for the dynamic regular part which, from the original double integral representation over the boundary element and the unit circle, are reduced to simple line integrals along the unit circle.The BEM will be applied to the determination of the eigen frequencies of piezoelectric resonators. The eigenvalue problem deals with full non-symmetric complex-valued matrices whose components depend non-linearly on the frequency. A comparative study will be made of non-linear eigenvalue solvers: QZ algorithm and the implicitly restarted Arnoldi method (IRAM). The FEM results whose accuracy is well established serve as the basis of the comparison. It is found that the IRAM is faster and has more control over the solution procedure than the QZ algorithm. The use of the time-harmonic fundamental solution provides a clean boundary only formulation of the BEM and, when applied to the eigenvalue problems with IRAM, provides eigen frequencies accurate enough to be used for industrial applications. It supersedes the dual reciprocity BEM and challenges to replace the FEM designed for the eigenvalue problems for piezoelectricity.  相似文献   

6.
二维位势边界元法高阶单元几乎奇异积分半解析算法   总被引:1,自引:1,他引:0  
准确计算几乎奇异积分是边界元法难题之一。目前,对于一般的高阶单元的几乎奇异积分尚缺乏通用高效的计算方法。本文在单元局部坐标系中表征了二维高阶单元的几何特征,提出了源点相对高阶单元的接近度概念。针对二维位势边界元法的3节点二次等参单元,构造出与单元积分核具有相同几乎奇异性的近似奇异核函数。从二维位势几乎奇异积分单元积分核中扣除近似奇异核函数,把几乎奇异积分项转换为规则积分和奇异积分两部分之和,规则积分部分用常规Gauss数值积分计算,奇异积分部分由导出的解析公式计算,从而建立了二维位势问题高阶单元几乎强奇异和超奇异积分的半解析算法。算例结果表明了本文半解析算法的有效性和计算精度。  相似文献   

7.
利用固定网格法分析三维非稳定渗流问题时,将要面对两项积分难题:以自由面及单元表面为边界的空间积分及以自由面为边界的曲面积分。针对常用的任意8结点6平面三维普通单元,提出采用坐标变换及等参变换技术求取空间积分项的精确数值解;至于曲面积分项,建议改用单元非饱和区部分表面作为积分边界,经过坐标变换及等参变换处理积分边界后,利用高斯数值积分可求出曲面积分项的精确数值解。通过一个普通单元及一项均质半无限边界堤坝的实例分析,表明此方法的精确性和稳定性良好。  相似文献   

8.
This paper presents a boundary element formulation and numerical implementation of the problem of small axisymmetric deformation of viscoplastic bodies. While the extension from planar to axisymmetric problems can be carried out fairly simply for the finite element method (FEM), this is far from true for the boundary element method (BEM). The primary reason for this fact is that the axisymmetric kernels in the integral equations of the BEM contain elliptic functions which cannot be integrated analytically even over boundary elements and internal cells of simple shape. Thus, special methods have to be developed for the efficient and accurate numerical integration of these singular and sensitive kernels over discrete elements. The accurate determination of stress rates by differentiation of the displacement rates presents another formidable challenge.A successful numerical implementation of the boundary element method with elementwise (called the Mixed approach) or pointwise (called the pure BEM or BEM approach) determination of stress rates has been carried out. A computer program has been developed for the solution of general axisymmetric viscoplasticity problems. Comparisons of numerical results from the BEM and FEM, for several illustrative problems, are presented and discussed in the paper. It is possible to get direct solutions for the simpler class of problems for cylinders of uniform cross-section, and these solutions are also compared with the BEM and FEM results for such cases.  相似文献   

9.
10.
In this paper, a 2-D elastic-plastic BEM formulation predicting the reduced mode IIand the enhanced mode I stress intensity factors are presented. The dilatant boundary conditions (DBC) are assumed to be idealized uniform sawtooth crack surfaces and an effective Coulombsliding law. Three types of crack face boundary conditions, i.e. (1) BEM sawtooth model-elasticcenter crack tip; (2) BEM sawtooth model-plastic center crack tip; and (3) BEM sawtoothmodel-edge crack with asperity wear are presented. The model is developed to attempt todescribe experimentally observed non-monotonic, non-linear dependence of shear crack behavioron applied shear stress, superimposed tensile stress, and crack length. The asperity sliding isgoverned by Coulombs law of friction applied on the inclined asperity surface which hascoefficient of friction μ. The traction and displacement Greens functions which derive fromNaviers equations are obtained as well as the governing boundary integral equations for an infiniteelastic medium. Accuracy test is performed by comparison stress intensity factors of the BEMmodel with analytical solutions of the elastic center crack tip. The numerical results show thepotential application of the BEM model to investigate the effect of mixed mode loading problemswith various boundary conditions and physical interactions.  相似文献   

11.
A computational model is proposed for short-fiber reinforced materials with the eigenstrain formulation of the boundary integral equations(BIE)and solved with the newly developed boundary point method(BPM).The model is closely derived from the concept of the equivalent inclusion of Eshelby tensors.Eigenstrains are iteratively determined for each short.fiber embedded in the matrix with various properties via the Eshelby tensors,which can be readily obtained beforehand either through analytical or numerical means.As unknown variables appear only on the boundary of the solution domain,the solution scale of the inhomogeneity problem with the model is greatly reduced.This feature is considered significant because such a traditionally time-consuming problem with inhomogeneity can be solved most cost-effectively compared with existing numerical models of the FEM or the BEM.The numerical examples are presented to compute the overall elastic properties for various short-fiber reinforced composites over a representative volume element(RVE),showing the validity and the effectiveness of the proposed computational modal and the solution procedure.  相似文献   

12.
A computational model is proposed for short-fiber reinforced materials with the eigenstrain formulation of the boundary integral equations (BIE) and solved with the newly developed boundary point method (BPM). The model is closely derived from the concept of the equivalent inclusion Of Eshelby tensors. Eigenstrains are iteratively determined for each short-fiber embedded in the matrix with various properties via the Eshelby tensors, which can be readily obtained beforehand either through analytical or numerical means. As unknown variables appear only on the boundary of the solution domain, the solution scale of the inhomogeneity problem with the model is greatly reduced. This feature is considered significant because such a traditionally time-consuming problem with inhomogeneity can be solved most cost-effectively compared with existing numerical models of the FEM or the BEM. The numerical examples are presented to compute the overall elastic properties for various short-fiber reinforced composites over a representative volume element (RVE), showing the validity and the effectiveness of the proposed computational modal and the solution procedure.  相似文献   

13.
The present work shows a new numerical treatment for wear simulation on 3D contact and rolling-contact problems. This formulation is based on the boundary element method (BEM) for computing the elastic influence coefficients and on projection functions over the augmented Lagrangian for contact restrictions fulfillment. The constitutive equations of the potential contact zone are Signorini’s contact conditions, Coulomb’s law of friction and Holm–Archard’s law of wear. The proposed methodology is applied to predict wear on different contact and rolling-contact problems. Results are validated with numerical solutions and semi-analytical models presented in the literature. The BEM considers only the degrees of freedom involved on these kind of problems (those on the solids surfaces), reducing the number of unknowns and obtaining a very good approximation on contact tractions using a low number of elements. Together with the formulation, an acceleration strategy is presented allowing to reduce the times of resolution.  相似文献   

14.
非连续边界元——有限元耦合方法分析   总被引:4,自引:0,他引:4  
对边界元-有限元耦合方法进行了分析,采用非连续元离散边界积分方程,解决了耦合分析中自由度约束问题,给出了非连续边界元同有限元耦合的具体实施步骤,通过对二维弹性力学和流=固耦合问题分析,表明了该文方法的有效性。  相似文献   

15.
AN IMPROVED HYBRID BOUNDARY NODE METHOD IN TWO-DIMENSIONAL SOLIDS   总被引:3,自引:2,他引:1  
The hybrid boundary node method (HBNM) is a promising method for solving boundary value problems with the hybrid displacement variational formulation and shape functions from the moving least squares(MLS) approximation. The main idea is to reduce the dimensionality of the former and keep the meshless advantage of the latter. Following its application in solving potential problems, it is further developed and numerically implemented for 2D solids in this paper. The rigid movement method is employed to solve the hyper-singular integrations. Numerical examples for some 2D solids have been given to show the characteristics. The computation results obtained by the present method are in excellent agreement with the analytical solution. The parameters that influence the performance of this method are studied through numerical examples.  相似文献   

16.
A Boundary Element Method (BEM) is described to compute the scattering of elastic waves by an axisymmetric inclusion in an infinite elastic medium. The boundary loads applied to the inclusion is expanded in terms of Fourier series in an infinite space. The boundary integral equation is solved in the general direction of the axisymmetric inclusion by BEM. The problem of the 3-D scattering of elastic waves is reduced to a 1-Done. According to the geometric features of the axisymmetric in clusion the ring shell elements are adopted in this method. A comparison is made with other BEM methods. The numerical results show this method can reduce the amount of calculation and enhance the speed of convergence. Supported by Foundation of Ph. D Program of State Education Commission of China  相似文献   

17.
梯度材料中矩形裂纹的对偶边界元方法分析   总被引:2,自引:0,他引:2  
肖洪天  岳中琦 《力学学报》2008,40(6):840-848
采用对偶边界元方法分析了梯度材料中的矩形裂纹. 该方法基于层状材料基本解,以非裂纹边界的位移和面力以及裂纹面的间断位移作为未知量. 位移边界积分方程的源点配置在非裂纹边界上,面力边界积分方程的源点配置在裂纹面上. 发展了边界积分方程中不同类型奇异积分的数值方法. 借助层状材料基本解,采用分层方法逼近梯度材料夹层沿厚度方向力学参数的变化. 与均匀介质中矩形裂纹的数值解对比,建议方法可以获得高精度的计算结果. 最后,分析了梯度材料中均匀张应力作用下矩形裂纹的应力强度因子,讨论了梯度材料非均匀参数、夹层厚度和裂纹与夹层之间相对位置对应力强度因子的影响.   相似文献   

18.
This paper deals with the numerical simulation of fluid dynamics using the boundary–domain integral technique (BEM). The steady 2D diffusion–convection equations are discussed and applied to solve the plane Navier-Stokes equations. A vorticity–velocity formulation has been used. The numerical scheme was tested on the well-known ‘driven cavity’ problem. Results for Re = 1000 and 10,000 are compared with benchmark solutions. There are also results for Re = 15,000 but they have only qualitative value. The purpose was to show the stability and robustness of the method even when the grid is relatively coarse.  相似文献   

19.
本文致力于平面正交各向异性弹性问题的规则化边界元法研究,提出了新的规则化边界元法的理论和方法。对问题的基本解的特性进行了研究,确立基本解的积分恒等式,提出一种基本解的分解技术,在此基础上,结合转化域积分方程为边界积分方程的极限定理,建立了新颖的规则化边界积分方程。和现有方法比,本文不必将问题变换为各向同性的去处理,从而不含反演运算,也有别于Galerkin方法,无需计算重积分,因此所提方法不仅效率高,而且程序设计简单。特别是,所建方程可计算任何边界位移梯度,进而可计算任意边界应力,而不仅限于面力。数值实施时,采用二次单元和椭圆弧精确单元来描述边界几何,使用不连续插值逼近边界函数。数值算例表明,本文算法稳定、效率高,所取得的边界量数值结果与精确解相当接近。  相似文献   

20.
A Hashin-Shtrikman-Willis variational principle is employed to derive two exact micromechanics-based nonlocal constitutive equations relating ensemble averages of stress and strain for two-phase, and also many types of multi-phase, random linear elastic composite materials. By exact is meant that the constitutive equations employ the complete spatially-varying ensemble-average strain field, not gradient approximations to it as were employed in the previous, related work of Drugan and Willis (J. Mech. Phys. Solids 44 (1996) 497) and Drugan (J. Mech. Phys. Solids 48 (2000) 1359) (and in other, more phenomenological works). Thus, the nonlocal constitutive equations obtained here are valid for arbitrary ensemble-average strain fields, not restricted to slowly-varying ones as is the case for gradient-approximate nonlocal constitutive equations. One approach presented shows how to solve the integral equations arising from the variational principle directly and exactly, for a special, physically reasonable choice of the homogeneous comparison material. The resulting nonlocal constitutive equation is applicable to composites of arbitrary anisotropy, and arbitrary phase contrast and volume fraction. One exact nonlocal constitutive equation derived using this approach is valid for two-phase composites having any statistically uniform distribution of phases, accounting for up through two-point statistics and arbitrary phase shape. It is also shown that the same approach can be used to derive exact nonlocal constitutive equations for a large class of composites comprised of more than two phases, still permitting arbitrary elastic anisotropy. The second approach presented employs three-dimensional Fourier transforms, resulting in a nonlocal constitutive equation valid for arbitrary choices of the comparison modulus for isotropic composites. This approach is based on use of the general representation of an isotropic fourth-rank tensor function of a vector variable, and its inverse. The exact nonlocal constitutive equations derived from these two approaches are applied to some example cases, directly rationalizing some recently-obtained numerical simulation results and assessing the accuracy of previous results based on gradient-approximate nonlocal constitutive equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号