首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-polar a-plane GaN films were grown on an r-plane sapphire substrate by plasma assisted molecular beam epitaxy (PAMBE). The effect of growth temperature on structural, morphological and optical properties has been studied. The growth of non-polar a-plane (1 1 ?2 0) orientation of the GaN epilayers were confirmed by high resolution X-ray diffraction (HRXRD) study. The X-ray rocking curve (XRC) full width at half maximum of the (1 1 ?2 0) reflection shows in-plane anisotropic behavior and found to decrease with increase in growth temperature. The atomic force micrograph (AFM) shows island-like growth for the film grown at a lower temperature. Surface roughness has been decreased with increase in growth temperature. Room temperature photoluminescence shows near band edge emission at 3.434–3.442 eV. The film grown at 800 °C shows emission at 2.2 eV, which is attributed to yellow luminescence along with near band edge emission.  相似文献   

2.
We report on the use of a novel technique to grow the nonpolar a-plane GaN on r-plane sapphire by metal–organic chemical vapor deposition. A thin InGaN interlayer was deposited on the substrate followed by a low temperature (LT) GaN buffer layer. A stripe-like template was obtained by annealing the LT GaN/InGaN layers at 1100 °C for 2 min. This special template facilitated the nanoscale epitaxial lateral overgrowth of a-plane GaN. Scanning electron microscopy shows that the surface morphology was rather flat for a 1 μm-thick sample. The improvement in crystalline quality was also demonstrated by high-resolution x-ray diffraction, room temperature Raman spectroscopy and photoluminescence measurements. Compared with the traditional epitaxial lateral overgrowth technique, our technique greatly simplified the template preparing process and the crystalline quality of a-plane GaN was improved.  相似文献   

3.
J. Ozdanova  H. Ticha  L. Tichy 《Journal of Non》2009,355(45-47):2318-2322
The glasses representing (Bi2O3)x(WO3)y(TeO2)100?x?y and (PbO)x(WO3)y(TeO2)100?x?y systems were prepared. The dilatometric glass-transition temperatures of examined glass samples were found in the region 383–434 °C, the coefficient of thermal expansion varied from 12 to 16 ppm/°C and the density ranged from 6.302 to 6.808 g/cm3. From the optical transmission measurements of thin glassy bulk samples prepared by a glass blowing, the optical gap values were found in the narrow region 3.21–3.36 eV. For the temperature interval 300–480 K, the values of the temperature coefficient of the optical band gap varied from 3.7 × 10?4 to 5.24 × 10?4 eV/K. It is suggested that Raman feature observed at around 350 cm?1 can be assigned to an overlap of Raman bands attributed to WO6 corner shared octahedra and to the following three atomic linkages: Bi–O–Te, Pb–O–Te and W–O–Te.  相似文献   

4.
M.H. Buraidah  A.K. Arof 《Journal of Non》2011,357(16-17):3261-3266
The (chitosan–PVA)–NH4I electrolytes have been prepared by the solution casting method. The prepared electrolytes are analyzed using Fourier transform infrared (FTIR) spectroscopy in order to determine the interaction between salt and the polymer blend hosts which can be deduced from the band shifting. From infrared spectra, shifts are observed at the amine, carboxamide, carbonyl and hydroxyl bands of chitosan and PVA. These shifts indicate that complexation has occurred. The crystallinity/amorphousness of the blended electrolytes has been examined by X-ray diffraction (XRD). XRD pattern shows that the crystallinity of chitosan–NH4I electrolyte increases with PVA concentration. Impedance of the electrolytes has been measured using electrochemical impedance spectroscopy (EIS) over the frequency range from 50 Hz to 1 MHz. The highest conducting sample 55 wt.% (chitosan–PVA)–45 wt.% NH4I has conductivity of 1.77 × 10? 6 S cm? 1. The chitosan:PVA ratio is 1:1. This is higher than the conductivity for the unblended electrolyte 55 wt.% chitosan–45 wt.% NH4I which is 3.73 × 10? 7 S cm? 1. From ln τ versus 103/T plot, the activation energy for relaxation process is 0.87 eV. This is different from activation energy for dc conductivity which is 0.38 eV. Ion conduction is by hopping.  相似文献   

5.
Chemical lift-off of (11–22) semipolar GaN using triangular cavities was investigated. The (11–22) semipolar GaN was grown using epitaxial lateral overgrowth by metal-organic chemical vapor deposition on m-plane sapphire, in such a way as to keep N terminated surface of c-plane GaN exposed in the cavities. After regrowing 300 μm thick (11–22) semipolar GaN by hydride vapor phase epitaxy for a free-standing (11–22) semipolar GaN substrate, the triangular cavities of the templates were chemically etched in molten KOH. The (000-2) plane in the triangular cavities can be etched in the [0002] direction with the high lateral etching rate of 196 μm/min. The resulting free-standing (11–22) semipolar GaN substrate was confirmed to be strain-free by the Raman analysis.  相似文献   

6.
In the present report, ionic transport properties and microstructural investigations of superionic materials in a cost-effective glassy system xCuI–(100 ? x)[2Ag2O–0.7V2O5–0.3B2O3], where x = 30, 40, 45, 50 and 60, have been described. The temperature dependent electrical conductivity studies were carried out by ac impedance analysis. The microstructure of the materials studied by SEM indicated the presence of dispersed CuO and AgI micro-crystals in the silver oxysalt glass matrix. High room temperature electrical conductivity of 3.58 × 10?3 S cm?1 and low activation energy of 0.24 eV were obtained for the best conducting composition. The ac impedance data were analyzed using impedance and modulus formalisms. These materials show extremely high ti value of 0.999 and the ionic conductivity is apparently due to Ag+ ions only. The use of two glass formers helped to form materials with higher Tg, higher thermal stability and better ionic transport properties.  相似文献   

7.
Fast ion conducting (FIC) phosphate glasses and glass ceramic composites have gained considerable importance due to their potential applications in the fabrication of solid-state batteries and other electrochemical devices. We, therefore, present an overview on various types of FIC glasses and glass ceramic composites. Silver phosphate glasses doped with different weight percent of lithium chloride (1, 5, 10 and 15 wt.%) were synthesized by melt quenching technique. The Ag2O–P2O5–(15 wt.%) LiCl glass exhibited the maximum electrical conductivity (σ = 8.91 × 10? 5 S cm? 1 at room temperature and 4.16 × 10? 3 S cm? 1 at 200 °C). Using this glass as an amorphous host material, glass–ceramic composites of Ag2O–P2O5–(15 wt.%) LiCl:xAl2O3 (x = 5–50 wt.%) were prepared. The ionic transference number, electrical conductivity, ionic mobility and carrier ion concentration of the synthesized samples were measured. Ag2O–P2O5–(15 wt.%) LiCl:(25 wt.%) Al2O3 composite system exhibited the maximum σ value (σ = 3.32 × 10? 4 S cm? 1 at room temperature and 2.88 × 10? 2 S cm? 1 at 200 °C ). Solid‐state batteries using undoped Ag2O–P2O5 glass, Ag2O–P2O5–(15 wt.%) LiCl glass and glass ceramic composite containing 25 wt.% Al2O3 as electrolytes were fabricated. The open circuit voltage (OCV) values and discharge time of these cells were measured and compared. It is found that the glass ceramic composites show enhanced ionic conduction, better OCV value and discharge characteristics.  相似文献   

8.
High quality InAlN/GaN heterostructures are successfully grown on the (0 0 0 1) sapphire substrate by pulsed metal organic chemical vapor deposition. The InAlN barrier layer with an indium composition of 17% is observed to be nearly lattice matched to GaN layer, and a smooth surface morphology can be obtained with root mean square roughness of 0.3 nm and without indium droplets and phase separation. The 50 mm InAlN/GaN heterostructure wafer exhibits a mobility of 1402 cm2/V s with a sheet carrier density of 2.01×1013  cm?2, and a low average sheet resistance of 234 Ω/cm2 with a sheet resistance nonuniformity of 1.22%. Compared with the conventional continual growth method, PMOCVD reduces the growth temperature of the InAlN layer and the Al related prereaction in the gas phase, and consequently enhances the surface migration, and improves the crystallization quality. Furthermore, indium concentration of InAlN layer can be controlled by adjusting the pulse time ratio of TMIn to TMAl in a unit cycle, the growth temperature and pressure, as well as the InAlN layer thickness by the number of unit cycle repeats.  相似文献   

9.
《Journal of Non》2007,353(13-15):1315-1321
This paper reports the effect of Ag-doping on electrical properties of a-Sb2Se3 in the temperature range 230–340 K and frequency range 5–100 kHz. The variation of transport properties with thermal doping has been studied. Ag-doping produces two homogeneous phases in the sample, which are found to be voltage dependent in the temperature range studied and frequency dependent in lower frequency region (0.1–10 kHz). Activation energy Eg and C′ [= σ0 exp (γ/k), where γ, is the temperature coefficient of the band gap] calculated from dc conductivity has been found to vary from (0.42 ± 0.01) eV to (0.26 ± 0.01) eV and (4.11 ± 0.01) × 10−5 to (2.90 ± 0.02) × 10−6 Ω−1 cm−1 respectively. Ag-doping can be used to make the sample useful in device applications.  相似文献   

10.
A series of tellurite glasses of composition, 75TeO2–20ZnO–(5 ? x)La2O3xEr2O3 (x = 0.05, 0.1, 0.3, 0.6, 1.0, 2.0, and 3.0 mol%) with different hydroxl content were prepared. The effect of Er3+ and OH? groups concentration on the emission properties of Er3+: 4I13/2  4I15/2 transition in tellurite glasses was investigated. The constant KOH–Er for Er3+ in tellurite glasses, which represents the strength of interaction between Er3+ and OH? groups in the case of energy migration, was about 14 × 10?19 cm4 s?1. The interaction parameter CEr,Er for the migration rate of Er3+: 4I13/2  4I13/2 transition in tellurite glass was 46 × 10?40 cm2, which indicates that concentration quenching in Er3+-doped modified tellurite glass for a given Er3+ concentration is much stronger than in silicate and phosphate glasses.  相似文献   

11.
《Journal of Crystal Growth》2006,286(2):235-239
The characteristics of Si-doped and undoped GaN/Si(1 1 1) heteroepitaxy with composite buffer layer (CBL) and superlattice are compared and discussed. While as-grown Si-doped GaN/Si(1 1 1) heteroepitaxy shows lower quality compared to undoped GaN, crack-free n-type and undoped GaN with the thickness of 1200 nm were obtained by metalorganic chemical vapor deposition (MOCVD). In order to achieve the crack-free GaN on Si(1 1 1), we have introduced the scheme of multiple buffer layers; composite buffer layer of Al0.2Ga0.8N/AlN and superlattice of Al0.2Ga0.8N/GaN on 2-in. Si(1 1 1) substrate, simultaneously. The FWHM values of the double-crystal X-ray diffractometry (DCXRD) rocking curves were 823 arcsec and 745 arcsec for n-GaN and undoped GaN/Si(1 1 1) heteroepitaxy, respectively. The average dislocation density on GaN surface was measured as 3.85×109 and 1.32×109 cm−2 for n-GaN and undoped GaN epitaxy by 2-D images of atomic force microscopy (AFM). Point analysis of photoluminescence (PL) spectra was performed for evaluating the optical properties of the GaN epitaxy. We also implemented PL mapping, which showed the distribution of edge emission peaks onto the 2 inch whole Si(1 1 1) wafers. The average FWHMs of the band edge emission peak was 367.1 and 367.0 nm related with 3.377 and 3.378 eV, respectively, using 325 nm He-Cd laser as an excitation source under room temperature.  相似文献   

12.
Estimates of Kerr electrooptical sensitivity of several tellurite glasses are presented. The highest value of Kerr coefficient B  190 × 10?16 m V?2 is registered for 0.6TeO2–0.3TlO0.5–0.1ZnO glass. This evidences the prospects of thallium–tellurite glass system for electrooptical applications. A gradual decrease of B from 41 × 10?16 to 26 × 10?16 m V?2 in (1 ? x) TeO2  xNbO2.5 system is revealed for x increasing from 0.1 to 0.15. No crystalline phase was found in that system, thus allowing attributing its Kerr sensitivity to the intrinsic properties of the glass matrix. The Kerr coefficient variation from 66 to 81 × 10?16 m V?2 was observed for 0.85TeO2–0.15WO3 glasses co-doped with small amounts of silver and cerium. The analysis of optical absorption spectra of several silver-containing tellurium–tungsten oxide glasses makes it possible to think that introducing cerium provokes formation of new mid-range orderings.  相似文献   

13.
Using a high purity CdSiP2 polycrystalline charge synthesized in a single-temperature zone furnace, a CdSiP2 single crystal with dimensions of 8 mm in diameter and 40 mm in length was successfully grown by the vertical Bridgman method. The quality of the crystal was characterized by high resolution X-ray diffraction and the full width at half maximum (FWHM) of the rocking curve for the (200) face is 33″. Thermal property measurements show that: the mean specific heat of CdSiP2 between 300 and 773 K is 0.476 J g?1 K?1; the thermal conductivity of the crystal along the a- and c-axes is 13.6 W m?1 K?1 and 13.7 W m?1 K?1 at 295 K, respectively; and the thermal expansion coefficient measured along the a- and c-axes is 8.4×10?6 K?1 and ?2.4×10?6 K?1, respectively. The optical transparency range of the crystal is 578–10,000 nm, and there is no absorption loss in the spectrum from 0.7 to 2.5 μm, as often exists with ZnGeP2 crystals grown from the melt.  相似文献   

14.
《Journal of Non》2007,353(5-7):526-529
Formation and destruction of silicon hydride (Si–H) groups in silica by F2 laser irradiation and their vacuum ultraviolet (VUV) optical absorption was examined by infrared (IR) and VUV spectroscopy. Photoinduced creation of Si–H groups in H2-impregnated oxygen deficient silica is accompanied by a growth of infrared absorption band at 2250 cm−1 and by a strong increase of VUV transmission at 7.9 eV. Photolysis of Si–H groups by 7.9 eV photons in this glass was not detected when the irradiation was performed at temperature 80 K. However, a slight destruction of Si–H groups under 7.9 eV irradiation was observed at the room temperature. This finding gives a tentative estimate of VUV absorption cross section of Si–H groups at 7.9 eV as 4 × 10−21 cm2, showing that Si–H groups do not strongly contribute to the absorption at the VUV fundamental absorption edge of silica glass.  相似文献   

15.
Efficient infrared emissions at 1.20 μm [5I6  5I8 transition] and 1.38 μm [(5 F4, 5 S2)  5I5 transition] from Ho3+-doped lithium–barium–bismuth–lead (LBBP) glass were observed. The stimulated emission cross-sections were calculated to be 0.29 × 10?20 and 0.25 × 10?20 cm2 for 1.20 and 1.38 μm emissions, respectively. Judd-Ofelt characteristic parameters Ω2, Ω4 and Ω6 for Ho3+ in LBBP glass were calculated to be 6.72 × 10?20, 2.35 × 10?20 and 0.61 × 10?20 cm2, respectively, which indicates a strong asymmetry and a covalent environment between the Ho3+ ions and the ligands in this glass. The optical amplifications operating at these relatively unexplored wavelength regions were evaluated and discussed.  相似文献   

16.
Upon excitation at 808 nm laser diode, an intense 1.47 μm infrared fluorescence has been observed with a broad full width at half maximum (FWHM) of about 124 nm for the Tm3+-doped TeO2-K2O-La2O3 glass. The Judd–Ofelt parameters found for this glass are: Ω2 = 5.26 × 10?20 cm2, Ω4 = 1.57 × 10?20 cm2 and Ω6 = 1.44 × 10?20 cm2. The calculated emission cross-sections of the 1.47 μm transition are 3.57 × 10?21 cm2, respectively. It is noted that the gain bandwidth, σe × FWHM, of the glass is about 440 × 10?28 cm3, which is significantly higher than that in ZBLAN and Gallate glasses, a high gain of 35.5 dB at 1470 nm can be obtained in a TKL glass fiber. TeO2-R2O (R = Li, Na, K)-La2O3 glasses has been considered to be more useful as a host for broadband optical fiber amplifier.  相似文献   

17.
Amorphous anhydrous silica SiO2 (mw) (99.99%) is successfully synthesized through microwave irradiation technique and time of reaction is reduced up to 1 h. The dehydration phase study of Si–water, Si–OH, Si–O–Si networking, elemental analysis and surface morphology was carried out by FTIR, FTNIR, SEM and EDAX spectroscopic techniques. The broad absorption stretching and bending of Si–OH and H2O at 3695.38–2832.96 cm? 1, 1638 cm? 1 and 1191.20–1017.14 cm? 1 completely disappeared and appearance of new bands at 946.93 and 797.63 cm? 1 confirmed the amorphous anhydrous silica with Si–O–Si networking. The SEM images of SiO2 (mwc) described the smooth and fine particle texture and confirmed 99.99% Si–O–Si networking of anhydrous silica. The 99.99% purity was verified by EDAX spectra which exhibited sharp signals only for oxygen and silicon. Toxicity against Monomorium minimum and Tribolium castaneum with 100% mortality and LT50 91 min and 7.5 h respectively is being reported. It can be used for long storage of grains in the future.  相似文献   

18.
《Journal of Non》2005,351(6-7):583-594
Lithium phosphoborosilicate (LPBS) glasses were synthesized through the sol–gel process by varying nitric acid concentrations as a catalyst. The sol–gel process was monitored through XRD and DSC to optimize the LPBS glass forming treatment. Characterization of LPBS glasses was conducted using XRD, FTIR and DSC techniques. Impedance measurements were carried out at different temperatures on LPBS samples synthesized by sol–gel process with various nitric acid concentrations and impedance data were analyzed using Boukamp equivalent circuit software. The conductivity of LPBS samples was calculated from analyzed impedance data and it was found that sample synthesized with 2.5 N nitric acid concentration showed the high conductivity σ = 2.28(±0.02) × 10−7 S cm−1 at 443 K. Activation energy (Ea) is obtained from Arrhenius plots of dc conductivity and it is found to be 0.39 (±0.02) eV for the high conductance sample. Ac conductivity data were analyzed using Jonscher’s power law (JPL) and the power law exponent (s) exhibits a low s value for high conducting LPBS sample and a non-linear behavior with temperature. The electric modulus data were fitted with Kohlraush–William–Watts (KWW) stretched exponential function and modulus formalism is used to study the ionic relaxation behavior at different temperatures in LPBS glasses synthesized with varying nitric acid concentrations.  相似文献   

19.
《Journal of Non》2006,352(32-35):3598-3602
Thermal lens (TL) measurements were performed in tellurite glasses, 70TeO2–19WO3–7Na2O–4Nb2O5 (mol%), undoped, doped with Er3+ (1.19 × 1020 ions/cm3) and co-doped with Er3+ (1.19 × 1020 ions/cm3)/Tm3+ (1.56 × 1020 ions/cm3). The absolute nonradiative quantum efficiency (ϕ) was determined by the TL method. The ϕ values for Er3+/Tm3+-co-doped and Er3+-doped tellurite glasses were 0.98 and 0.74, respectively. Fluorescence spectra were performed at λe = 488 nm and used to estimate the fluorescence quantum efficiency (η) using the TL results. These values were compared with results obtained by Judd–Ofelt calculations.  相似文献   

20.
A new kind of germanate glass co-doped with Yb3+–Ho3+ was prepared. The J-O parameters were calculated to be Ω2 = (6.59 ± 0.21) × 10? 20 cm2, Ω4 = (2.77 ± 0.36) × 10? 20 cm2, and Ω6 = (1.90 ± 0.25) × 10? 20 cm2. The little overlap between the absorption cross section and stimulated emission cross section indicates a non-resonant energy transfer process. The calculation demonstrates that the energy transfer between Yb3+ and Ho3+ is one-phonon assisted in a great measure. The gain coefficient of Ho3+ at 2.0 μm was also calculated. The fluorescence measurement shows the Yb3+ co-doping enhances the 2.0 μm emission remarkably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号