首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, we present a three-dimensional nanorod solar cell design. As the backbone of the nanorod device, density-controlled zinc oxide (ZnO) nanorods were synthesized by a simple aqueous solution growth technique at 80 °C on ZnO thin film pre-coated glass substrate. The as-prepared ZnO nanorods were coated by an amorphous hydrogenated silicon (a-Si:H) light absorber layer to form a nanorod solar cell. The light management, current–voltage characteristics and corresponding external quantum efficiency of the solar cells were investigated. An energy conversion efficiency of 3.9% was achieved for the nanorod solar cells with an a-Si:H absorber layer thickness of 75 nm, which is significantly higher than the 2.6% and the 3.0% obtained for cells with the same a-Si:H absorber layer thickness on planar ZnO and on textured SnO2:F counterparts, respectively. A short-circuit current density of 11.6 mA/cm2 and correspondingly, a broad external quantum efficiency profile were achieved for the nanorod device. An absorbed light fraction higher than 80% in the wavelength range of 375–675 nm was also demonstrated for the nanorod solar cells, including a peak value of ~ 90% at 520–530 nm.  相似文献   

2.
Morphological change from ZnO films to ZnO prisms is achieved by an electrochemical deposition method on a graphite substrate at the low temperature of 70 °C. The ZnO prisms, which are prism-shaped ZnO rods with a wide diameter, have hexagonal well-defined crystallographic facets. The ZnO prism is 1.4 μm in diameter and 1.3 μm in length. Transmission electron microscopy and electron diffraction patterns indicate that the ZnO prisms have a single-crystalline wurtzite structure with c-axis orientation. Additionally, cathodoluminescence shows that the annealed ZnO prisms in nitrogen gas emit a significant level of near-band-edge ultraviolet light.  相似文献   

3.
The effects of Fe-dopant concentration on the structure, optical, and magnetic properties of ZnO thin films were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), optical transmittance, absorption, photoluminescence (PL), and magnetic measurements. XRD spectra indicated that the doping of Fe atoms could not only change the lattice constant of ZnO but also improve the crystalline quality of ZnO thin films. And the Zn (0 0 2) diffraction peak at round 36.34°(2θ) was detected with increasing Fe content for the substitution of the Zn in the ZnO film. The band gap edge shifted toward longer wavelength with increase in Fe doping. Moreover, near band edge emission gradually increased with increase in Fe content (up to about 0.82 wt%), and then abruptly decreased due to the concentration quenching effect. Magnetic measurements confirmed that the ferromagnetic behavior of Fe-doped ZnO was correlated with the dopant concentration.  相似文献   

4.
With ZnS nanoparticles as raw materials, two kinds of nanorods were fabricated. When ZnS nanoparticles were dispersed in Zn(NO3)2 solution and were treated in a sealed autoclave at 150 °C for 24 h, ZnO nanorods formed. ZnS nanoparticles work as a source of monomers for the growth of ZnO nanorods. With increase of concentration of Zn(NO3)2 solution, the products present long nanorods, short nanorods, star structure and bulk particle sequentially. When ZnS nanoparticles were kept in a solution at room temperature, ZnS nanorods formed after 21 days. ZnS nanoparticles work as assembly parts. They fit together spontaneously and present ZnS nanorods with many parallel stripes along the lengthways surface. To check the generality of self-assembling, PdS and Y2S3 nanorods were also fabricated.  相似文献   

5.
《Journal of Crystal Growth》2006,286(1):178-183
CaCO3 nanorods were synthesized via a facile solution route by polymer-controlled crystallization in the presence of polyacrylamide (PAM). The morphology, size and crystal structure were characterized by means of scanning electron microscope (SEM), transmission electron microscope (TEM), and X-ray diffraction (XRD). The results suggest that the as-synthesized product was CaCO3 (aragonite) nanorods with diameter ca. 50 nm and length ca. 1 μm. Selected area electron diffraction (SAED) pattern shows the single-crystal nature of CaCO3 nanorods. The reaction time, temperature, pH and reactant concentration were systemically investigated. With the increase in the reaction time, hollow vaterite hexagonal disks can be obtained.  相似文献   

6.
Polyaniline (PANI) was synthesized and doped with 0, 2, 4 and 16 wt.% of pure and functionalized multiwall carbon nanotubes (MWCNTs) by “in-situ” polymerization. Measurement of temperature dependence of electrical resistivity showed a reduction in the resistivity of the composites at all temperatures. The reduction was increased by increasing the wt.% of MWCNTs. This decrease was more for the composites containing functionalized MWCNTs and was more prominent for temperatures below 150 K. The glass transition temperature (Tg) of the pure and doped PANI was measured using electrical resistivity measurements. It was observed that by increasing the amount of functionalized MWCNTs in PANI, its Tg increases. Temperature dependence of resistivity of pressed pure PANI showed that by increasing the pelletization pressure, the bulk electrical resistivity decreased but the Tg increased.  相似文献   

7.
BexZn1‐xO nanorod arrays with high crystalline quality were fabricated on Si substrate by a simple, low‐cost hydrothermal method. The effect of Be‐corporation on the structure, morphology and optical property of ZnO nanorod arrays was investigated. The diameter of BexZn1‐xO nanorods gradually decreased and the length of them increased with increasing Be concentration. Edge emissions of the BexZn1‐xO nanorods show a obvious blue shift upon the increase of the Be content.  相似文献   

8.
《Journal of Non》2006,352(38-39):4088-4092
In this paper, amorphous ZnO thin films were obtained by direct UV irradiation of β-diketonate Zn(II) precursor complexes spin-coated on Si(1 0 0) and fused silica substrates. ZnO films were characterized by means of XPS, X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). These analyses revealed that as-deposited films are amorphous and have a rougher surface than thermally treated films. Optical characterization of the films showed that these are highly transparent in the visible spectrum with an average transmittance of up to 95% over 400 nm, and an optical band-gap energy of 3.21 eV for an as-deposited film, and 3.27 eV for a film annealed at 800 °C. Low resistivity values were obtained for the ZnO films (1.0 × 10−2 Ω cm) as determined by Van der Pauw four-point probe method.  相似文献   

9.
《Journal of Crystal Growth》2003,247(3-4):393-400
Using a highly conductive ZnO(ZnAl2O4) ceramic target, c-axis-oriented transparent conductive ZnO:Al2O3 (ZAO) thin films were prepared on glass sheet substrates by direct current planar magnetron sputtering. The structural, electrical and optical properties of the films (deposited at different temperatures and annealed at 400°C in vacuum) were characterized with several techniques. The experimental results show that the electrical resistivity of films deposited at 320°C is 2.67×10−4 Ω cm and can be further reduced to as low as 1.5×10−4 Ω cm by annealing at 400°C for 2 h in a vacuum pressure of 10−5 Torr. ZAO thin films deposited at room temperature have flaky crystallites with an average grain size of ∼100 nm; however those deposited at 320°C have tetrahedron grains with an average grain size of ∼150 nm. By increasing the deposition temperature or the post-deposition vacuum annealing, the carrier concentration of ZAO thin films increases, and the absorption edge in the transmission spectra shifts toward the shorter wavelength side (blue shift).  相似文献   

10.
《Journal of Non》2006,352(23-25):2335-2338
This paper reports the structural, electrical and optical properties of Yttrium doped zinc oxide (YZO) thin films deposited on Corning (7059) glass substrates by spin coating technique. A precursor solution of ZnO, 0.2 M in concentration was prepared from zinc acetate dissolved in anhydrous ethanol with diethanolamine as a sol gel stabilizer. Yttrium nitrate hexahydrate (Y2NO3 · 6H2O) was used as the dopant (3 wt%) in the present study. The films of different thickness in the range (200–500 nm) were prepared. The films were annealed in air at 450 °C for 1 h. It was observed that the c-axis orientation improves and the grain size increases as is indicated by an increase in intensity of the (0 0 2) peak and the decrease in the FWHM with the increase of film thickness. The resistivity decreased sharply from 2.8 × 10−2 to 5.8 × 10−3 Ω-cm as the thickness increased from 200 to 500 nm. However, the average transmittance decreased from 87% to 82.6% as the film thickness increased to 500 nm. The lowest sheet resistance of ∼120 Ω/□ was obtained for the 500 nm thick film.  相似文献   

11.
《Journal of Non》2006,352(6-7):601-609
Nanoparticles of silver and copper were grown at the glass–crystal interfaces within a silicate glass by reducing the ion-exchanged glass–ceramic concerned. By controlling the reduction treatment a wide range of surface resistivity e.g., from 0.2 to 1010 Ω/sq. could be generated. Silver nanowires of diameter ∼40 nm were grown within the pores of a silica gel. They exhibited single electron tunneling as evidenced by conductance maxima at definite intervals of the applied voltage. Silver nanowires of diameter 0.5 nm were grown within the crystal channels of fluorophlogopite mica which were first precipitated in a silicate glass. The nanowires when broken gave giant dielectric permittivity (∼107) to the composite. Copper core–copper oxide shell and iron core–iron oxide shell nanostructures respectively were generated within a silica gel. The core–shell structure exhibited electrical conductivity several orders of magnitude higher than that of the precursor gel. An interfacial amorphous phase contributed to this increase in electrical conductivity. Glass–ceramics containing BaTiO3 and nanoparticles of silver showed a five order of magnitude decrease in electrical resistance as the relative humidity was changed from 25% to 75%. Arrays of metal nanoparticles (silver or copper) grown within a silicate glass exhibited a diode-like behavior. This was explained as arising due to formation of metal–semiconductor nanojunctions – metal particles smaller than 3 nm behaving like a semiconductor. The examples reviewed here show that exploiting the void spaces available in an oxide glass nanophases of a wide variety could be grown within and novel properties generated. This approach could be promising in imparting new functionality to conventional glasses.  相似文献   

12.
This study examined the structural properties of ZnO nanorods grown on Ti-buffer layers with different surface roughnesses of 1.5 and 4.0 nm. Vertically aligned ZnO nanorods were synthesized on Al2O3 substrates with a Ti-buffer layer by metal-organic chemical vapor deposition. X-ray diffraction revealed the ZnO nanorods grown on a smooth surface to have higher quality and better alignment in the ab-plane than those grown on the rough surface. Field-emission transmission electron microscopy (FE-TEM) measurements revealed a disordered layer at the ZnO/Ti interface. FE-TEM demonstrated that the Ti-buffer layer contained a mixture of ordered and amorphous phases. Energy dispersive spectroscopy (EDS) analysis revealed the Ti-buffer layers to be entirely oxides.  相似文献   

13.
《Journal of Non》2007,353(32-40):3231-3236
The electrical resistivity, R, and the thermoelectric power, S, have been measured for liquid transition metal–Si alloys (TMcSi1−c, TM = Ni, Fe, Mn), and liquid Cr0.1Si0.9 and Co0.1Si0.9 alloys as a function of temperature. The electrical resistivity increases rapidly with the addition of Fe, Mn and Cr to liquid Si and the liquid MncSi1−c alloys with 1  c  0.6 have an electrical resistivity of approximately 200 μΩ cm. The composition dependence of the electrical resistivity for liquid FecSi1−c and NicSi1−c systems exhibits a maximum at the composition c = 0.5 and c = 0.6, respectively. Liquid TM–Si alloys have a negative value of thermoelectric power over the wide composition range. The variation of R and S by the addition of Fe, Co and Ni solutes to liquid Si is in good agreement with that estimated from the 3d resonant scattering theory. The composition dependence of R and S of liquid Ni–Si can be qualitatively explained by the extended Ziman’s formula.  相似文献   

14.
Tin oxide (SnO2) nanorods were synthesized through an aqueous hexamethylenetetramine (HMTA) assisted synthesis route and their structural evolution from core–shell type faceted pyramidal assembly was investigated. Structural analysis revealed that the as-synthesized faceted SnO2 structures were made of randomly arranged nanocrystals with diameter of 2–5 nm. The shell thickness (0–80 nm) was dependent on the molar concentration of HMTA (1–10 mM) in aqueous solution. It was revealed that the self-assembly was possible only with tin (II) chloride solution as precursor and not with tin (IV) chloride solution. At longer synthesis hours, the pyramidal nanostructures were gradually disintegrated into single crystalline nanorods with diameter of about 5–10 nm and length of about 100–200 nm. The SnO2 nanorods showed high sensitivity towards acetone, but they were relatively less sensitive to methane, butane, sulfur dioxide, carbon monoxide and carbon dioxide. Possible mechanisms for the growth and sensing properties of the nanostructures were discussed.  相似文献   

15.
Highly ordered nanorods array of B phase vanadium dioxide was firstly synthesized with n-butanol as the reducing agent via a simple hydrothermal method without using template. The samples have been characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE-SEM). The size of VO2 (B) nanorods has the dimension of 50–100 nm in diameter and about 1–5 μm in length. The samples were measured as electrode materials by charge–discharge technique and the VO2 (B) nanorods array demonstrated a high specific capacity of 520 mAh/g at 0.2 C. The influence of reaction temperature on fabricating nanorods array has been studied. The possible growth mechanisms of formation of nanorods and assembly of array were discussed.  相似文献   

16.
ZnO/SrTiO3 core/shell nanorod arrays were fabricated by a facile two‐step method. ZnO nanorod arrays were first hydrothermally grown on Si substrate. Then, using liquid phase deposition method, SrTiO3 were deposited onto the ZnO nanorods to form core/shell nanorod structures. The morphologies and structures of the products were characterized by scanning electron microscopy, transmission electron microscopy, and X‐ray diffraction. The photocatalytic behavior of the nanorod arrays was also examined through the photodegradation of methylene blue solution under UV irradiation. It was found that the core/shell nanorod arrays with deposition time of 10 min showed higher photocatalytic activity than bare ZnO nanorod arrays. This enhancement was attributed to the efficient charge separation at the ZnO/SrTiO3 interface.  相似文献   

17.
Silicon nanowires offer an opportunity to improve light trapping in low-cost silicon photovoltaic cells. We have grown radial junctions of hydrogenated amorphous silicon over p-doped crystalline silicon nanowires in a single pump-down plasma enhanced chemical vapor deposition process on glass substrates. By using Sn catalysts and boosting p-type doping in the nanowires, the open-circuit voltage of the devices increased from 200 to 800 mV. Light trapping was optimized by extending the length of nanowires in these devices from 1 to 3 μm, producing currents in excess of – 13 mA cm? 2 and energy conversion efficiencies of 5.6%. The advantages of using thinner window layers to increase blue spectral response were also assessed.  相似文献   

18.
Aluminum doped ZnO thin films were successfully deposited on the silicon substrates by spin coating method. The effects of an annealing temperature on electrical and optical properties were investigated for 1.5 at.% of aluminum. Refractive index profile has been obtained for the film annealed at 350 °C using ellipsometry and it has shown minimum refractive index of 1.95 and maximum value of 2.1. Thickness profile shows quite good uniformity of the film having minimum thickness value of 30.1 nm and maximum value of 34.5 nm. Maximum conductivity value obtained was 4.63 Ω?1-cm?1 for the film annealed at 350 °C. Maximum carrier density of 2.20 × 1017 cm?3 was deduced from the Hall measurement and Fourier transform infrared spectroscopy clearly reveals major peak at 407 cm?1 in the spectra associated with the ZnO bond.  相似文献   

19.
A low‐temperature synthetic route was used to prepare oriented arrays of ZnO nanorods on ITO conducting glass substrate coated with buffer layer of ZnO seeds in an aqueous solution. The corresponding growth behavior and optical properties of ZnO nanorod arrays were studied. It was found that the nature of the buffer layer had effect on the microstructures and optical properties of the resultant ZnO nanorod arrays. X‐ray diffraction (XRD) results showed the nanorods were preferentially grown along (002) direction, but the diameter of the nanorods prepared with the buffer layer was much smaller than the without one, which can be clearly seen from the scanning electron microscopy (SEM) results. And it also found that the buffer layer was not only enhanced the density of overall coverage but also beneficial to grown the oriented arrays. Photoluminescence spectroscopy (PL) results indicated that the all the samples had the better optical behaviors. By computation, the relative PL intensity ratio of ultraviolet emission (IUV) to deep level emission (IDLE) of ZnO nanorods grown with the pure substrate was much higher than that of the sample with the buffer layer. The defects on the surface increased with the size reduction of nanorods caused by the buffer layer may be the main reason for it. And the small shift in the UV emission was caused by the rapid reduction in crystal size and compressive stress from Raman spectra results. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
In an effort to design low-melting, durable, transparent glasses, two series of glasses have been prepared in the NaPO3–ZnO–Nb2O5–Al2O3 system with ZnO/Nb2O5 ratio of 2 and 1. The addition of ZnO and Nb2O5 to the sodium aluminophosphate matrix yields a linear increase of properties such as glass transition temperature, density, refractive index and elastic moduli. The chemical durability is also significantly, but nonlinearly, improved. The glass with the highest niobium concentration, 55NaPO3–20ZnO–20Nb2O5–5Al2O3 was found to have a dissolution rate of 4.5 × 10? 8 g cm? 2 min? 1, comparable to window glass. Structural models of the glasses were developed using Raman spectroscopy and nuclear magnetic resonance spectroscopy, and the models were correlated with the compositional dependence of the properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号