首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the framework of the Kirchhoff–Love asymptotic theory of elastic thin plates we consider the unilateral contact problem with friction for a plate on a rigid foundation (Signorini problem with friction). First, we notice, when the thickness vanishes, that the order of the friction force must be lower than that of the contact pressure. These two measures are connected by Coulomb law. Consequently, at least formally, the friction force must be vanishing when the thickness goes to zero. We actually prove that any sequence of solution of the sequence of three-dimensional scaled Signorini problems with friction strongly converges to the unique solution of a two-dimensional Signorini plate problem without friction. To cite this article: J.-C. Paumier, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 567–570.  相似文献   

2.
The aim of this paper is to study an interaction law coupling recoverable adhesion, friction and unilateral contact between two viscoelastic bodies of Kelvin–Voigt type. A dynamic contact problem with adhesion and nonlocal friction is considered and its variational formulation is written as the coupling between an implicit variational inequality and a parabolic variational inequality describing the evolution of the intensity of adhesion. The existence and approximation of variational solutions are analysed, based on a penalty method, some abstract results and compactness properties. Finally, some numerical examples are presented.  相似文献   

3.
We consider a nonlinear antiplane problem which models the deformation of an elastic cylindrical body in frictional contact with a rigid foundation. The contact is modelled with Tresca’s law of dry friction in which the friction bound is slip dependent.The aim of this article is to study an optimal control problem which consists of leading the stress tensor as close as possible to a given target, by acting with a control on the boundary of the body. The existence of at least one optimal control is proved. Next we introduce a regularized problem, depending on a small parameter ρ, and we study the convergence of the optimal controls when ρ tends to zero. An optimality condition is delivered for the regularized problem.  相似文献   

4.
5.
The axisymmetric problem of the contact interaction of a punch of polynomial profile and an elastic half-space when there is friction and partial adhesion in the contact area is considered. Using the Wiener–Hopf method the problem is reduced to an infinite system of algebraic Poincare–Koch equations, the solution of which is obtained in series. The radii of the contact area and of the adhesion zone, the distribution of the contact pressures and the indentation of the punch are obtained.  相似文献   

6.
The aim of this paper is to study an interaction law coupling recoverable adhesion, friction and unilateral contact between two viscoelastic bodies of Kelvin–Voigt type. A dynamic contact problem with adhesion and nonlocal friction is considered and its variational formulation is written as the coupling between an implicit variational inequality and a parabolic variational inequality describing the evolution of the intensity of adhesion. The existence and approximation of variational solutions are analysed, based on a penalty method, some abstract results and compactness properties. Finally, some numerical examples are presented.  相似文献   

7.
We study a boundary contact problem for a micropolar homogeneous elastic hemitropic medium with regard of friction; in the considered case, friction forces do not arise in the tangential displacement but correspond to a normal displacement of the medium. We consider two cases: the coercive case (in which the elastic body has a fixed part of the boundary) and the noncoercive case (without fixed parts). By using the Steklov–Poincaré operator, we reduce this problem to an equivalent boundary variational inequality. Existence and uniqueness theorems are proved for the weak solution on the basis of properties of general variational inequalities. In the coercive case, the problem is unconditionally solvable, and the solution depends continuously on the data of the original problem. In the noncoercive case, we present closed-form necessary conditions for the existence of a solution of the contact problem. Under additional assumptions, these conditions are also sufficient for the existence of a solution.  相似文献   

8.
The aim of this paper is to comprehensively analyse the performance of a new ring-type brake energy dissipator through the finite element method (FEM) (formulation and finite element approximation of contact in nonlinear mechanics) and experimental comparison. This new structural device is used as a system component in rockfall barriers and fences and it is composed of steel bearing ropes, bent pipes and aluminium compression sleeves. The bearing ropes are guided through pipes bent into double-loops and held by compression sleeves. These elements work as brake rings. In important events the brake rings contract and so dissipate residual energy out of the ring net, without damaging the ropes. The rope’s breaking load is not diminished by activation of the brake. The full understanding of this problem implies the simultaneous study of three nonlinearities: material nonlinearity (plastic behaviour) and failure criteria, large displacements (geometric nonlinearity) and friction-contact phenomena among brake ring components. The explicit dynamic analysis procedure is carried out by means of the implementation of an explicit integration rule together with the use of diagonal element mass matrices. The equations of motion for the brake ring are integrated using the explicit central difference integration rule. The presence of the contact phenomenon implies the existence of inequality constraints. The conditions for normal contact are and gλ=0, where λ is the normal traction component and g is the gap function for the contact surface pair. To include frictional conditions, let us assume that Coulomb’s law of friction holds pointwise on the different contact surfaces, μ being the dynamic coefficient of friction. Next, we define the non-dimensional variable τ by means of the expression τ=t/μλ, where μλ is the frictional resistance and t is the tangential traction component. In order to find the best brake performance, different dynamic friction coefficients corresponding to the pressures of the compression sleeves have been adopted and simulated numerically by FEM and then we have compared them with the results from full-scale experimental tests. Finally, the most important conclusions of this study are given.  相似文献   

9.
In this paper we study a dynamic unilateral contact problem with friction for a cracked viscoelastic body. The viscoelastic model is characterized by Kelvin–Voigt's law and a nonlocal friction law is investigated here. The existence of a solution to the problem is obtained by using a penalty method. Several estimates are obtained on the solution to the penalized problem, which enable us to pass to the limit by using compactness results. To cite this article: M. Cocou, G. Scarella, C. R. Acad. Sci. Paris, Ser. I 338 (2004).  相似文献   

10.
The plane contact problem of the sliding without friction of a rigid cylinder over a viscoelastic half-space when there is adhesion is solved, neglecting the inertial properties of the half-space. The distribution of the contact pressure, the size and position of the contact area, and the deformation force of resistance to motion of the cylinder are investigated as a function of the adhesion properties of the surfaces, the mechanical characteristics of the half-space and the sliding velocity of the cylinder.  相似文献   

11.
The paper is concerned with the numerical solution of a thermoelastic rolling contact problem with wear. The friction between the bodies is governed by Coulomb law. A frictional heat generation and heat transfer across the contact surface as well as Archard's law of wear in contact zone are assumed. The friction coefficient is assumed to depend on temperature. In the paper quasistatic approach to solve this contact problem is employed. This approach is based on the assumption that for the observer moving with the rolling body the displacement of the supporting foundation is independent on time. The original thermoelastic contact problem described by the hyperbolic inequality governing the displacement and the parabolic equation governing the heat flow is transformed into elliptic inequality and elliptic equation, respectively. In order to solve numerically this system we decouple it into mechanical and thermal parts. Finite element method is used as a discretization method. Numerical examples showing the influence of the temperature dependent friction coefficient on the temperature distribution and the length of the contact zone are provided. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Numerous laboratory experiments indicate that the use of a layer or a coating material attached to the conventional steel body reduce the magnitude of contact stress. Therefore in this paper we solve numerically the wheel–rail contact problem with friction and wear assuming the existence of a small elastic layer on the rail surface. Material properties of this layer are changing with its depth. The friction between the bodies is governed by Coulomb law. In contact zone Archard's law of wear is assumed. We take special features of this rolling contact problem and use so-called quasistatic approach to solve this contact problem. Finite element method is used as a discretization method. The numerical results including the distribution of normal stress along the contact boundary are provided and discussed. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
A solution of the plane problem of the contact interaction of a periodic system of convex punches with an elastic half-plane is given for two forms of boundary conditions: 1) sliding of the punches when there is friction and wear, and 2) the indentation of the punches when there is adhesion. The problem is reduced to a canonical singular integral equation on the arc of a circle in the complex plane. The solution of this equation is expressed in terms of simple algebraic functions of a complex variable, which considerably simplifies its analysis. Asymptotic expressions are obtained for the solution of the problem in the case when the size of the contact area is small compared with the distance between the punches.  相似文献   

14.
We consider the elasticity problem in a domain with contact on multiple periodic open cracks. The contact is described by the Signorini and Coulomb‐friction conditions. The problem is nonlinear, the dissipative functional depends on the unknown solution, and the existence of the solution for fixed period of the structure is usually proven by the fix‐point argument in the Sobolev spaces with a little higher regularity, H1+α. We rescaled norms, trace, jump, and Korn inequalities in fractional Sobolev spaces with positive and negative exponents, using the unfolding technique, introduced by Griso, Cioranescu, and Damlamian. Then we proved the existence and uniqueness of the solution for friction and period fixed. Then we proved the continuous dependency of the solution to the problem with Coulomb's friction on the given friction and then estimated the solution using fixed‐point theorem. However, we were not able to pass to the strong limit in the frictional dissipative term. For this reason, we regularized the problem by adding a fourth‐order term, which increased the regularity of the solution and allowed the passing to the limit. This can be interpreted as micro‐polar elasticity.  相似文献   

15.
We study the interior and exterior contact problems for hemitropic elastic solids. We treat the cases when the friction effects, described by Tresca friction (given friction model), are taken into consideration either on some part of the boundary of the body or on the whole boundary. We equivalently reduce these problems to a boundary variational inequality with the help of the Steklov–Poincaré type operator. Based on our boundary variational inequality approach we prove existence and uniqueness theorems for weak solutions. We prove that the solutions continuously depend on the data of the original problem and on the friction coefficient. For the interior problem, necessary and sufficient conditions of solvability are established when friction is taken into consideration on the whole boundary.  相似文献   

16.
Zoufine Bare  Julia Orlik 《PAMM》2011,11(1):501-502
In this work a 3-D contact elasticity problem for a thin fiber and a rigid foundation is studied. We describe the contact condition by a linear Robin-boundary-condition (by meaning of the penalized and linearized non-penetration and friction conditions). The Robin parameters are scaled differently in the longitudinal and cross-sectional directions. The dimension of the problem is reduced by a standard ([3], [4]) asymptotic approach with an additional expansion suggested to fulfil the contact conditions. The 3-D contact conditions result into 1-D Robin-boundary-conditions for corresponding ODEs. The Robin-coefficients of the 1-D problem depend on the ones from the 3-D statement and on the cross-section of the fiber. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
An analytic solution of the thermal problem of friction for a plane-parallel layer–base tribosystem under conditions of incomplete thermal contact between contacting bodies is obtained. Asymptotics of the obtained solution for small and large values of time are determined. For the materials of a cermet layer–iron base friction pair, we investigate the influence of the thermal conductivity coefficient of the contact on the temperature distribution and intensity of a heat fluxes.  相似文献   

18.
A variational method is developed for solving friction contact problems, in which the friction obeys Coulomb's of friction law in velocities, and numerical solutions of three-dimensional problems of the contact of a sphere, a cylinder of finite length and a cube with an elastic half-space are constructed. It is established that the maximum frictional forces correspond to a boundary point of the regions of adhesion and slippage. When the number of steps,increase this maximum decreases, and the distribution of the frictional forces becomes smoother. Certain undesirable effects that can arise during numerical implementation of the method – numerical artefacts – are described. These effects can occur in the numerical solution of problems with a different physical content, the mathematical structure of which is similar to the structure of the contact problems investigated, as the artefacts are caused by the presence of unilateral constraints and by the dependence on external effects of the region in which unilateral constraints with an equally sign occur. This problem is solved by an appropriate choice of the load-step zero approximations.  相似文献   

19.
In this paper we introduce and investigate a model for adhesive contact with friction between a thermoviscoelastic body and a rigid support.A PDE system, consisting of the evolution equations for the temperatures in the bulk domain and on the contact surface, of the momentum balance, and of the equation for the internal variable describing the state of the adhesion, is derived on the basis of a surface damage theory by M. Frémond.The existence of global-in-time solutions to the associated initial–boundary value problem is proved by passing to the limit in a carefully tailored time-discretization scheme.  相似文献   

20.
Zoufine Bare  Julia Orlik 《PAMM》2013,13(1):365-366
The asymptotic dimension reduction for beam contact problems without friction leads to decoupled ODE systems in the longitudinal variable, see [4]. This decoupling is due to the fact that friction is not taken into account. In this work we extend [2] by an alternative scaling of the tensile force in the 3D formulation that permits us to reduce the dimension of a contact problem with friction in tensile direction, too. The tension and the bending component in the direction of the contact normal are coupled due to the friction. The coupling of the displacement components is illustrated by a numerical example. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号