首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
We present a spectral-element discontinuous Galerkin lattice Boltzmann method for solving nearly incompressible flows. Decoupling the collision step from the streaming step offers numerical stability at high Reynolds numbers. In the streaming step, we employ high-order spectral-element discontinuous Galerkin discretizations using a tensor product basis of one-dimensional Lagrange interpolation polynomials based on Gauss–Lobatto–Legendre grids. Our scheme is cost-effective with a fully diagonal mass matrix, advancing time integration with the fourth-order Runge–Kutta method. We present a consistent treatment for imposing boundary conditions with a numerical flux in the discontinuous Galerkin approach. We show convergence studies for Couette flows and demonstrate two benchmark cases with lid-driven cavity flows for Re = 400–5000 and flows around an impulsively started cylinder for Re = 550–9500. Computational results are compared with those of other theoretical and computational work that used a multigrid method, a vortex method, and a spectral element model.  相似文献   

2.
A continuous Lagrangian sensitivity equation method (CLSEM) is presented as a cost effective alternative to the continuous (Eulerian) sensitivity equation method (CESEM) in the case of shape parameters. Boundary conditions for the CLSEM are simpler than those of the CESEM. However a mapping must be introduced to relate the undeformed and deformed configurations thus making the PDEs more complicated. We propose the use of pseudo-elasticity equations to provide a general framework to generate this mapping for unstructured meshes on complex geometries. The methodology is presented in details for the incompressible Navier–Stokes and sensitivity equations in variational form. The PDEs are solved with an adaptive FEM. Sensitivity data obtained with both approaches for a flow around a NACA 4512 are used to obtain estimates of flows around nearby geometries. Results indicate that the CLSEM produces significant improvements in terms of both accuracy and CPU time.  相似文献   

3.
In this paper, the meshless local Petrov–Galerkin (MLPG) method is extended to solve the incompressible fluid flow problems. The streamline upwind Petrov–Galerkin (SUPG) method is applied to overcome oscillations in convection-dominated problems, and the pressure-stabilizing Petrov–Galerkin (PSPG) method is applied to satisfy the so-called Babuška–Brezzi condition. The same stabilization parameter τ(τSUPG = τPSPG) is used in the present method. The circle domain of support, linear basis, and fourth-order spline weight function are applied to compute the shape function, and Bubnov–Galerkin method is applied to discretize the PDEs. The lid-driven cavity flow, backward facing step flow and natural convection in the square cavity are applied to validate the accuracy and feasibility of the present method. The results show that the stability of the present method is very good and convergent solutions can be obtained at high Reynolds number. The results of the present method are in good agreement with the classical results. It also seems that the present method (which is a truly meshless) is very promising in dealing with the convection- dominated problems.  相似文献   

4.
崔学武  杨峰  周龙建  高敏  闫飞  梁志鹏 《中国物理 B》2017,26(10):104101-104101
Several major challenges need to be faced for efficient transient multiscale electromagnetic simulations, such as flexible and robust geometric modeling schemes, efficient and stable time-stepping algorithms, etc. Fortunately, because of the versatile choices of spatial discretization and temporal integration, a discontinuous Galerkin time-domain(DGTD) method can be a very promising method of solving transient multiscale electromagnetic problems. In this paper, we present the application of a leap-frog DGTD method to the analyzing of the multiscale electromagnetic scattering problems. The uniaxial perfect matching layer(UPML) truncation of the computational domain is discussed and formulated in the leap-frog DGTD context. Numerical validations are performed in the challenging test cases demonstrating the accuracy and effectiveness of the method in solving transient multiscale electromagnetic problems compared with those of other numerical methods.  相似文献   

5.
6.
In this work we present a pressure-correction scheme for the incompressible Navier–Stokes equations combining a discontinuous Galerkin approximation for the velocity and a standard continuous Galerkin approximation for the pressure. The main interest of pressure-correction algorithms is the reduced computational cost compared to monolithic strategies. In this work we show how a proper discretization of the decoupled momentum equation can render this method suitable to simulate high Reynolds regimes. The proposed spatial velocity–pressure approximation is LBB stable for equal polynomial orders and it allows adaptive p-refinement for velocity and global p-refinement for pressure. The method is validated against a large set of classical two- and three-dimensional test cases covering a wide range of Reynolds numbers, in which it proves effective both in terms of accuracy and computational cost.  相似文献   

7.
In this work we extend the high-order discontinuous Galerkin (DG) finite element method to inviscid low Mach number flows. The method here presented is designed to improve the accuracy and efficiency of the solution at low Mach numbers using both explicit and implicit schemes for the temporal discretization of the compressible Euler equations. The algorithm is based on a classical preconditioning technique that in general entails modifying both the instationary term of the governing equations and the dissipative term of the numerical flux function (full preconditioning approach). In the paper we show that full preconditioning is beneficial for explicit time integration while the implicit scheme turns out to be efficient and accurate using just the modified numerical flux function. Thus the implicit scheme could also be used for time accurate computations. The performance of the method is demonstrated by solving an inviscid flow past a NACA0012 airfoil at different low Mach numbers using various degrees of polynomial approximations. Computations with and without preconditioning are performed on different grid topologies to analyze the influence of the spatial discretization on the accuracy of the DG solutions at low Mach numbers.  相似文献   

8.
Obtaining accurate approximations for derivatives is important for many scientific applications in such areas as fluid mechanics and chemistry as well as in visualization applications. In this paper we discuss techniques for computing accurate approximations of high-order derivatives for discontinuous Galerkin solutions to hyperbolic equations related to these areas. In previous work, improvement in the accuracy of the numerical solution using discontinuous Galerkin methods was obtained through post-processing by convolution with a suitably defined kernel. This post-processing technique was able to improve the order of accuracy of the approximation to the solution of time-dependent symmetric linear hyperbolic partial differential equations from order k+1k+1 to order 2k+12k+1 over a uniform mesh; this was extended to include one-sided post-processing as well as post-processing over non-uniform meshes. In this paper, we address the issue of improving the accuracy of approximations to derivatives of the solution by using the method introduced by Thomée [19]. It consists in simply taking the ααth-derivative of the convolution of the solution with a sufficiently smooth kernel. The order of convergence of the approximation is then independent   of the order of the derivative, |α||α|. We also discuss an efficient way of computing the approximation which does not involve differentiation but the application of simple finite differencing. Our results show that the above-mentioned approximations to the ααth-derivative of the exact solution of linear, multidimensional symmetric hyperbolic systems obtained by the discontinuous Galerkin method with polynomials of degree kk converge with order 2k+12k+1 regardless of the order |α||α| of the derivative.  相似文献   

9.
The aim of the present paper is to report on our recent results for GPU accelerated simulations of compressible flows. For numerical simulation the adaptive discontinuous Galerkin method with the multidimensional bicharacteristic based evolution Galerkin operator has been used. For time discretization we have applied the explicit third order Runge-Kutta method. Evaluation of the genuinely multidimensional evolution operator has been accelerated using the GPU implementation. We have obtained a speedup up to 30 (in comparison to a single CPU core) for the calculation of the evolution Galerkin operator on a typical discretization mesh consisting of 16384 mesh cells.  相似文献   

10.
A nodal discontinuous Galerkin finite element method (DG-FEM) to solve the linear and nonlinear elastic wave equation in heterogeneous media with arbitrary high order accuracy in space on unstructured triangular or quadrilateral meshes is presented. This DG-FEM method combines the geometrical flexibility of the finite element method, and the high parallelization potentiality and strongly nonlinear wave phenomena simulation capability of the finite volume method, required for nonlinear elastodynamics simulations. In order to facilitate the implementation based on a numerical scheme developed for electromagnetic applications, the equations of nonlinear elastodynamics have been written in a conservative form. The adopted formalism allows the introduction of different kinds of elastic nonlinearities, such as the classical quadratic and cubic nonlinearities, or the quadratic hysteretic nonlinearities. Absorbing layers perfectly matched to the calculation domain of the nearly perfectly matched layers type have been introduced to simulate, when needed, semi-infinite or infinite media. The developed DG-FEM scheme has been verified by means of a comparison with analytical solutions and numerical results already published in the literature for simple geometrical configurations: Lamb's problem and plane wave nonlinear propagation.  相似文献   

11.
张荣培  张立伟 《中国物理 B》2012,21(9):90206-090206
In this study, we use the direct discontinuous Galerkin method to solve the generalized Burgers-Fisher equation. The method is based on the direct weak formulation of the Burgers-Fisher equation. The two adjacent cells are jointed by a numerical flux that includes the convection numerical flux and the diffusion numerical flux. We solve the ordinary differential equations arising in the direct Galerkin method by using the strong stability preserving Runge-Kutta method. Numerical results are compared with the exact solution and the other results to show the accuracy and reliability of the method.  相似文献   

12.
In the recent years, there has been an increasing interest in discontinuous Galerkin time domain (DGTD) methods for the solution of the unsteady Maxwell equations modeling electromagnetic wave propagation. One of the main features of DGTD methods is their ability to deal with unstructured meshes which are particularly well suited to the discretization of the geometrical details and heterogeneous media that characterize realistic propagation problems. Such DGTD methods most often rely on explicit time integration schemes and lead to block diagonal mass matrices. However, explicit DGTD methods are also constrained by a stability condition that can be very restrictive on highly refined meshes and when the local approximation relies on high order polynomial interpolation. An implicit time integration scheme is a natural way to obtain a time domain method which is unconditionally stable but at the expense of the inversion of a global linear system at each time step. A more viable approach consists of applying an implicit time integration scheme locally in the refined regions of the mesh while preserving an explicit time scheme in the complementary part, resulting in an hybrid explicit–implicit (or locally implicit) time integration strategy. In this paper, we report on our recent efforts towards the development of such a hybrid explicit–implicit DGTD method for solving the time domain Maxwell equations on unstructured simplicial meshes. Numerical experiments for 3D propagation problems in homogeneous and heterogeneous media illustrate the possibilities of the method for simulations involving locally refined meshes.  相似文献   

13.
侯毅然  王玉恒  王向晖  张杰  齐红新 《强激光与粒子束》2021,33(7):073010-1-073010-7
介质沿空间固定方向均匀分布的结构在电磁导波器件中有十分广泛的应用,对这类器件的分析通常被称为2.5D电磁问题。利用器件在固定方向介质分布均匀的特点,将电磁场量沿该方向进行空间傅里叶变换,可以把对三维问题的分析转化为两维问题求解,从而极大地减小计算开销。针对传统基于差分的2.5D电磁场算法在弯曲形状逼近上有阶梯误差的缺陷,本文提出了基于三角形网格的2.5D时域间断有限元方法(DGTD),并用它模拟了电偶极子与光纤的耦合效率和光子晶体光纤的色散特性。与基于规则网格的2.5D差分方法进行对比。结果表明,文中建立的2.5D DGTD方法对弯曲形状的模拟更加逼真,计算内存占用最大减少10.4%,计算精度最大相差0.011%,计算时间缩短74.9%,计算效率提高。  相似文献   

14.
We describe a numerical scheme for computing time-dependent solutions of the incompressible Navier-Stokes equations in the primitive variable formulation. This scheme uses finite elements for the space discretization and operator splitting techniques for the time discretization. The resulting discrete equations are solved using specialized nonlinear optimization algorithms that are computationally efficient and have modest storage requirements. The basic numerical kernel is the preconditioned conjugate gradient method for symmetric, positive-definite, sparse matrix systems, which can be efficiently implemented on the architectures of vector and parallel processing supercomputers.  相似文献   

15.
张忠宇  姚熊亮  张阿漫 《物理学报》2016,65(8):84701-084701
基于高阶的间断有限元方法, 数值模拟低马赫数下并列圆柱的可压缩层流流动, 捕捉并列圆柱流场中的漩涡结构, 以便分析并列圆柱尾流的流动特性. 针对二维圆柱的边界形式, 采用曲边三角形单元构造二维圆柱的曲面边界, 以适应高阶离散格式的精度. 在验证方法合理性的基础上, 分析圆柱间距及雷诺数对漩涡脱落及受力特性的影响规律. 研究结果表明: 并列圆柱的间距是影响流场流动特性的一个主要因素, 它会改变圆柱漩涡脱落的形式. 随着圆柱间距的增加, 上下圆柱的平均阻力系数及平均升力系数的绝对值随之显著下降. 雷诺数对于平均阻力系数的影响相对较小. 但随着雷诺数的增加, 上下圆柱的平均升力系数会随之降低, 而漩涡的脱落频率会随之增大.  相似文献   

16.
We develop a smoothed aggregation-based algebraic multigrid solver for high-order discontinuous Galerkin discretizations of the Poisson problem. Algebraic multigrid is a popular and effective method for solving the sparse linear systems that arise from discretizing partial differential equations. However, high-order discontinuous Galerkin discretizations have proved challenging for algebraic multigrid. The increasing condition number of the matrix and loss of locality in the matrix stencil as p increases, in addition to the effect of weakly enforced Dirichlet boundary conditions all contribute to the challenging algebraic setting.  相似文献   

17.
张荣培  蔚喜军  赵国忠 《中国物理 B》2011,20(11):110205-110205
In the current work, we extend the local discontinuous Galerkin method to a more general application system. The Burgers and coupled Burgers equations are solved by the local discontinuous Galerkin method. Numerical experiments are given to verify the efficiency and accuracy of our method. Moreover the numerical results show that the method can approximate sharp fronts accurately with minimal oscillation.  相似文献   

18.
To develop and analyze new computational techniques for the Boltzmann equation based on model or approximation adaptivity, it is imperative to have disposal of a compliant model problem that displays the essential characteristics of the Boltzmann equation and that admits the extraction of highly accurate reference solutions. For standard collision processes, the Boltzmann equation itself fails to meet the second requirement for d = 2, 3 spatial dimensions, on account of its setting in 2d, while for d = 1 the first requirement is violated because the Boltzmann equation then lacks the convergence-to-equilibrium property that forms the substructure of simplified models. In this article we present a numerical investigation of a new one-dimensional prototype of the Boltzmann equation. The underlying molecular model is endowed with random collisions, which have been fabricated such that the corresponding Boltzmann equation exhibits convergence to Maxwell–Boltzmann equilibrium solutions. The new Boltzmann model is approximated by means of a discontinuous Galerkin (DG) finite-element method. To validate the one-dimensional Boltzmann model, we conduct numerical experiments and compare the results with Monte-Carlo simulations of equivalent molecular-dynamics models.  相似文献   

19.
A Hermite WENO reconstruction-based discontinuous Galerkin method RDG(P1P2), designed not only to enhance the accuracy of discontinuous Galerkin method but also to ensure linear stability of the RDG method, is presented for solving the compressible Euler equations on tetrahedral grids. In this RDG(P1P2) method, a quadratic polynomial solution (P2) is first reconstructed using a least-squares method from the underlying linear polynomial (P1) discontinuous Galerkin solution. By taking advantage of handily available and yet invaluable information, namely the derivatives in the DG formulation, the stencils used in the reconstruction involve only von Neumann neighborhood (adjacent face-neighboring cells) and thus are compact and consistent with the underlying DG method. The final quadratic polynomial solution is then obtained using a WENO reconstruction, which is necessary to ensure linear stability of the RDG method. The developed RDG method is used to compute a variety of flow problems on tetrahedral meshes to demonstrate its accuracy, efficiency, robustness, and versatility. The numerical experiments demonstrate that the developed RDG(P1P2) method is able to maintain the linear stability, achieve the designed third-order of accuracy: one order accuracy higher than the underlying DG method without significant increase in computing costs and storage requirements.  相似文献   

20.
A second-order hybrid level set-volume constraint method (HLSVC) for numerically simulating deforming boundaries is presented. We combine the HLSVC interface advection algorithm with a two phase flow solver in order to numerically capture deforming bubbles and drops whose actual volume (s) fluctuate about fixed “target” volume (s). Three novel developments are described: (1) a new method for enforcing a volume constraint in which the number of bubbles and drops can change due to merging or splitting, (2) a new, second order, semi-lagrangian narrow band level set reinitialization algorithm, and (3) validation of a two-phase flow numerical method by comparison with linear stability analysis results for a co-flowing liquid jet in gas. The new interface capturing method is tested on benchmark problems in which the velocity is prescribed (passive advection of interfaces) and in which the velocity is determined by the incompressible Navier–Stokes equations for two-phase flow. The error in interface position when using the hybrid level set-volume constraint method is reported for many benchmark problems in polar coordinates, cylindrical coordinates, and on an adaptive grid in which one criteria of adaptivity is the magnitude of the interface curvature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号