首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In turbulent flows it is only feasible to simulate large flow structures. Variational multiscale (VMS) methods define these flow structures by projections onto appropriate function spaces. This paper presents a finite element VMS method which chooses the large scale projection space adaptively. The adaption controls the influence of an eddy viscosity model and it is based on the size of the so-called resolved small scales. The adaptive procedure is described in detail. Numerical studies at a turbulent channel flow and a turbulent flow around a cylinder are presented. It is shown that the method selects the large scale space in a reasonable way and that appropriately chosen parameters improve the results compared to the basic method, which uses the same local large scale space in the whole domain and for all times.  相似文献   

2.
We propose an alternative SPH scheme to usual SPH Godunov-type methods for simulating supersonic compressible flows with sharp discontinuities. The method relies on an adaptive density kernel estimation (ADKE) algorithm, which allows the width of the kernel interpolant to vary locally in space and time so that the minimum necessary smoothing is applied in regions of low density. We have performed a von Neumann stability analysis of the SPH equations for an ideal gas and derived the corresponding dispersion relation in terms of the local width of the kernel. Solution of the dispersion relation in the short wavelength limit shows that stability is achieved for a wide range of the ADKE parameters. Application of the method to high Mach number shocks confirms the predictions of the linear analysis. Examples of the resolving power of the method are given for a set of difficult problems, involving the collision of two strong shocks, the strong shock-tube test, and the interaction of two blast waves.  相似文献   

3.
A method has been developed for tracking irregularities in the acoustic waveform of a sustained phonation using the adaptive Wiener filter. Irregularities are determined by the technique of correlation cancellation. The algorithm is evaluated using sustained vowels produced by a formant synthesizer and by subjects with and without phonatary disorders. Results indicate that the method is capable of differentiating between normal and abnormal voices. Most significantly, however, it can also track sporadic or nonstationary irregularities in the shape of an individual acoustic wavelet. This method is expected to be a useful tool for the acoustics analysis of voice production.  相似文献   

4.
Blind pixel compensation is an ill-posed inverse problem of infrared imaging systems and image restoration. The performance of a blind pixel compensation algorithm depends on the accuracy of estimation for the underlying true infrared images. We propose an adaptive regression method (ARM) for blind pixel compensation that integrates the multi-scale framework with a regression model. A blind-pixel is restored by exploiting the intra-scale properties through the nonparametric regressive estimation and the inter-scale characteristics via parametric regression for continuous learning. Combining the respective strengths of a parametric model and a nonparametric model, ARM establishes a set of multi-scale blind-pixel compensation method to correct the non-uniformity based on key frame extraction. Therefore, it is essentially different from the traditional frameworks for blind pixel compensation which are based on filtering and interpolation. Experimental results on some challenging cases of blind compensation show that the proposed algorithm outperforms existing methods by a significant margin in both isolated blind restoration and clustered blind restoration.  相似文献   

5.
Obtaining solutions of the Eliassen balanced vortex model requires solving an invertibility relation, which is a nonlinear elliptic problem of the Monge-Ampere type. Multigrid techniques for this problem are investigated. An adaptive algorithm which combines the full multigrid method with continuation in a parameter related to the strength of the forcing is developed. Numerical results demonstrate the efficiency and robustness of this algorithm.  相似文献   

6.
This paper presents an adaptive moving mesh algorithm for two-dimensional (2D) ideal magnetohydrodynamics (MHD) that utilizes a staggered constrained transport technique to keep the magnetic field divergence-free. The algorithm consists of two independent parts: MHD evolution and mesh-redistribution. The first part is a high-resolution, divergence-free, shock-capturing scheme on a fixed quadrangular mesh, while the second part is an iterative procedure. In each iteration, mesh points are first redistributed, and then a conservative-interpolation formula is used to calculate the remapped cell-averages of the mass, momentum, and total energy on the resulting new mesh; the magnetic potential is remapped to the new mesh in a non-conservative way and is reconstructed to give a divergence-free magnetic field on the new mesh. Several numerical examples are given to demonstrate that the proposed method can achieve high numerical accuracy, track and resolve strong shock waves in ideal MHD problems, and preserve divergence-free property of the magnetic field. Numerical examples include the smooth Alfvén wave problem, 2D and 2.5D shock tube problems, two rotor problems, the stringent blast problem, and the cloud–shock interaction problem.  相似文献   

7.
Siren noises usually severely disturb the intelligibility of voice communication inside the cabs of police, paramedic and fire vehicles. It is often desired that such unwanted noise can be removed from the speech signal. In this paper, a new method is proposed to adaptively cancel siren noises and enhance speech signals. Based on the characteristics of siren noises, an anti-speech filter and a time delayer are employed in the single and dual channel noise cancellation systems to reduce the siren noises. Experiment results demonstrate that the effectiveness of the proposed method for canceling the siren noises and the performance of the enhanced speech signal is satisfying.  相似文献   

8.
A 3D parallel adaptive mesh refinement (AMR) scheme is described for solving the partial-differential equations governing ideal magnetohydrodynamic (MHD) flows. This new algorithm adopts a cell-centered upwind finite-volume discretization procedure and uses limited solution reconstruction, approximate Riemann solvers, and explicit multi-stage time stepping to solve the MHD equations in divergence form, providing a combination of high solution accuracy and computational robustness across a large range in the plasma β (β is the ratio of thermal and magnetic pressures). The data structure naturally lends itself to domain decomposition, thereby enabling efficient and scalable implementations on massively parallel supercomputers. Numerical results for MHD simulations of magnetospheric plasma flows are described to demonstrate the validity and capabilities of the approach for space weather applications  相似文献   

9.
In this work, we present an adaptive high-order minimum action method for dynamical systems perturbed by small noise. We use the hp finite element method to approximate the minimal action path and nonlinear conjugate gradient method to solve the optimization problem given by the Freidlin–Wentzell least action principle. The gradient of the discrete action functional is obtained through the functional derivative and the moving mesh technique is employed to enhance the approximation accuracy. Numerical examples are given to demonstrate the efficiency and accuracy of the proposed numerical method.  相似文献   

10.
李均浩  刘文红 《应用声学》2019,38(2):253-260
针对基于时延估计的机电设备故障声定位中的低信噪比和脉冲噪声情况,用α稳定分布建模噪声,改进了非整数自适应时延估计方法。共变相关法对观测序列进行时延估计粗测,将得到的估计值作为非整数自适应时延估计器的初值;将共变相关法中共变序列作为时延估计器的输入信号,在最小平均p范数准则下迭代得到非整数时延估计值。共变序列保留了原始序列间的时延信息,削弱了不相关的噪声。计算机仿真对比实验验证了改进的方法在脉冲环境和低信噪比条件下有更好的性能。  相似文献   

11.
We propose a fast, adaptive multiscale resolution spectral measurement method based on compressed sensing. The method can apply variable measurement resolution over the entire spectral range to reduce the measurement time by over 75% compared to a global high-resolution measurement. Mimicking the characteristics of the human retina system, the resolution distribution follows the principle of gradually decreasing. The system allows the spectral peaks of interest to be captured dynamically or to b...  相似文献   

12.
提出了一种自适应多普勒畸变校正方法,以声源移动速度v、初始时刻麦克风与声源横向距离x两个运动学参数为优化变量,以最大化重采样信号的频域统计指标为优化目标,通过参数寻优进行v和x的估计,通过幅值还原和时域插值拟合进行畸变校正。仿真分析结果表明,频谱峭度、频谱偏度、频谱脉冲因子和频谱峰值因子4种统计指标均能准确识别运动学参数,且频谱峭度的抗噪能力最好,临界信噪比达到-3.1 dB。实验分析结果表明,列车故障轴承多普勒畸变声音信号校正后,包络谱故障频率成分及其倍频成分清晰准确,说明多普勒畸变得到有效校正。该方法可基于信号本身实现多普勒畸变信号时频结构的全面校正。  相似文献   

13.
The multiscale finite volume (MSFV) method is a computationally efficient numerical method for the solution of elliptic and parabolic problems with heterogeneous coefficients. It has been shown for a wide range of test cases that the MSFV results are in close agreement with those obtained with a classical (computationally expensive) technique. The method, however, fails to give accurate results for highly anisotropic heterogeneous problems due to weak localization assumptions. Recently, a convergent iterative MSFV (i-MSFV) method was developed to enhance the quality of the multiscale results by improving the localization conditions. Although the i-MSFV method proved to be efficient for most practical problems, it is still favorable to improve the localization condition adaptively, i.e. only for a sub-domain where the original MSFV localization conditions are not acceptable, e.g. near shale layers and long coherent structures with high permeability contrasts. In this paper, a space–time adaptive i-MSFV (ai-MSFV) method is introduced. It is shown how to improve the MSFV results adaptively in space and simulation time. The fine-scale smoother, which is necessary for convergence of the i-MSFV method, is also applied locally. Finally, for multiphase flow problems, two criteria are investigated for adaptively updating the MSFV interpolation functions: (1) a criterion based on the total mobility change for the transient coefficients and (2) a criterion based on the pressure equation residual for the accuracy of the results. For various challenging test cases it is demonstrated that iterations in order to obtain accurate results even for highly anisotropic heterogeneous problems are required only in small sub-domains and not everywhere. The findings show that the error introduced in the MSFV framework can be controlled and improved very efficiently with very little additional computational cost compared to the original, non-iterative MSFV method.  相似文献   

14.
禹东川  孟庆浩 《物理学报》2005,54(3):1092-1097
混沌系统的一般变结构控制方法存在高频抖振和需要事先已知系统不确定项的上界等不足,针对这些不足,以一类不确定时变混沌系统为例,提出了自适应无抖振变结构控制(ACFVSC)方法,以控制混沌系统到任意设定轨道.该方法不仅能消除滑模面附近的抖振现象,实现渐近跟踪,而且不需要“不确定项的上界已知”的先验知识.ACFVSC的渐近跟踪分析与仿真结果都表明,只要选择合适的控制器参数,就能在有限时间内达到任意的设定跟踪精度. 关键词: 不确定时变混沌系统 变结构控制 无抖振  相似文献   

15.
一种基于选择性测量的自适应压缩感知方法   总被引:1,自引:0,他引:1       下载免费PDF全文
康荣宗  田鹏武  于宏毅 《物理学报》2014,63(20):200701-200701
针对低信噪比条件下现有压缩感知系统重构性能严重恶化的问题,提出了一种基于选择性测量的自适应压缩感知结构.首先推导并分析了经过压缩测量的噪声的统计特性及其对重构性能的影响;然后基于输出能量最小化准则,设计了一种压缩域投影滤波联合噪声检测的自适应感知器,感知获得噪声子空间的位置信息;进一步利用该信息构造选择性压缩测量矩阵,智能选择测量信号,同时"屏蔽"噪声分量,极大提高了压缩测量值的信噪比.仿真结果表明,相对于现有压缩感知结构,选择性测量的压缩感知结构明显改善了含噪稀疏信号的重构性能,可更好地应用于吸波材料的前端特性分析、认知无线电的频谱感知等领域.  相似文献   

16.
A new quasicontinuum (QC) implementation using the so-called “variable-node finite elements” is reported in this work. Tetrahedral elements, which have been exclusively utilized for the conventional QC are replaced by hexahedral elements in conjunction with the so-called variable-node elements. This enables an effective adaptive mesh refinement in QC, leading to fast and efficient simulations compared with the conventional QC. To confirm the solution accuracy, comparison is made for a nanoindentation problem with a molecular dynamics simulation as well as a molecular mechanics solution. Further examples of nanoindentation are shown and discussed to demonstrate the effectiveness of the present scheme.  相似文献   

17.
A multiscale hybrid method for coupling the direct simulation Monte Carlo (DSMC) method to the nonequilibrium molecular dynamics (NEMD) method is introduced. The method addresses Knudsen layer type gas flows within a few mean free paths of an interface or about an object with dimensions of the order of a few mean free paths. It employs the NEMD method to resolve nanoscale phenomena closest to the interface along with coupled DSMC simulation of the remainder of the Knudsen layer. The hybrid DSMC/NEMD method is a particle based algorithm without a buffer zone. It incorporates a new, modified generalized soft sphere (MGSS) molecular collision model to improve the poor computational efficiency of the traditional generalized soft sphere GSS model and to achieve DSMC compatibility with Lennard-Jones NEMD molecular interactions. An equilibrium gas, a Fourier thermal flow, and an oscillatory Couette flow, are simulated to validate the method. The method shows good agreement with Maxwell–Boltzmann theory for the equilibrium system, Chapman–Enskog theory for Fourier flow, and pure DSMC simulations for oscillatory Couette flow. Speedup in CPU time of the hybrid solver is benchmarked against a pure NEMD solver baseline for different system sizes and solver domain partitions. Finally, the hybrid method is applied to investigate interaction of argon gas with solid surface molecules in a parametric study of the influence of wetting effects and solid molecular mass on energy transfer and thermal accommodation coefficients. It is determined that wetting effect strength and solid molecular mass have a significant impact on the energy transfer between gas and solid phases and thermal accommodation coefficient.  相似文献   

18.
We present a computational method for determining the geometry of a class of three-dimensional invariant manifolds in non-autonomous (aperiodically time-dependent) dynamical systems. The presented approach can be also applied to analyse the geometry of 3D invariant manifolds in three-dimensional, time-dependent fluid flows. The invariance property of such manifolds requires that, at any fixed time, they are given by surfaces in R3. We focus on a class of manifolds whose instantaneous geometry is given by orientable surfaces embedded in R3. The presented technique can be employed, in particular, to compute codimension one (invariant) stable and unstable manifolds of hyperbolic trajectories in 3D non-autonomous dynamical systems which are crucial in the Lagrangian transport analysis. The same approach can also be used to determine evolution of an orientable ‘material surface’ in a fluid flow. These developments represent the first step towards a non-trivial 3D extension of the so-called lobe dynamics — a geometric, invariant-manifold-based framework which has been very successful in the analysis of Lagrangian transport in unsteady, two-dimensional fluid flows. In the developed algorithm, the instantaneous geometry of an invariant manifold is represented by an adaptively evolving triangular mesh with piecewise C2 interpolating functions. The method employs an automatic mesh refinement which is coupled with adaptive vertex redistribution. A variant of the advancing front technique is used for remeshing, whenever necessary. Such an approach allows for computationally efficient determination of highly convoluted, evolving geometry of codimension one invariant manifolds in unsteady three-dimensional flows. We show that the developed method is capable of providing detailed information on the evolving Lagrangian flow structure in three dimensions over long periods of time, which is crucial for a meaningful 3D transport analysis.  相似文献   

19.
An algebraic variational multiscale–multigrid method is proposed for large-eddy simulation of turbulent variable-density flow at low Mach number. Scale-separating operators generated by level-transfer operators from plain aggregation algebraic multigrid methods enable the application of modeling terms to selected scale groups (here, the smaller of the resolved scales) in a purely algebraic way. Thus, for scale separation, no additional discretization besides the basic one is required, in contrast to earlier approaches based on geometric multigrid methods. The proposed method is thoroughly validated via three numerical test cases of increasing complexity: a Rayleigh–Taylor instability, turbulent channel flow with a heated and a cooled wall, and turbulent flow past a backward-facing step with heating. Results obtained with the algebraic variational multiscale–multigrid method are compared to results obtained with residual-based variational multiscale methods as well as reference results from direct numerical simulation, experiments and LES published elsewhere. Particularly, mean and various second-order velocity and temperature results obtained for turbulent channel flow with a heated and a cooled wall indicate the higher prediction quality achievable when adding a small-scale subgrid-viscosity term within the algebraic multigrid framework instead of residual-based terms accounting for the subgrid-scale part of the non-linear convective term.  相似文献   

20.
In the previous multiscale finite-volume (MSFV) method, an efficient and accurate multiscale approach was proposed to solve the elliptic flow equation. The reconstructed fine-scale velocity field was then used to solve the nonlinear hyperbolic transport equation for the fine-scale saturations using an overlapping Schwarz scheme. A coarse-scale system for the transport equations was not derived because of the hyperbolic character of the governing equations and intricate nonlinear interactions between the saturation field and the underlying heterogeneous permeability distribution. In this paper, we describe a sequential implicit multiscale finite-volume framework for coupled flow and transport with general prolongation and restriction operations for both pressure and saturation, in which three adaptive prolongation operators for the saturation are used. In regions with rapid pressure and saturation changes, the original approach, with full reconstruction of the velocity field and overlapping Schwarz, is used to compute the saturations. In regions where the temporal changes in velocity or saturation can be represented by asymptotic linear approximations, two additional approximate prolongation operators are proposed. The efficiency and accuracy are evaluated for two-phase incompressible flow in two- and three-dimensional domains. The new adaptive algorithm is tested using various models with homogeneous and heterogeneous permeabilities. It is demonstrated that the multiscale results with the adaptive transport calculation are in excellent agreement with the fine-scale solutions. Furthermore, the adaptive multiscale scheme of flow and transport is much more computationally efficient compared with the previous MSFV method and conventional fine-scale reservoir simulation methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号