首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we establish the global existence and stability of a steady conic shock wave for the symmetrically perturbed supersonic flow past an infinitely long conic body as long as the vertex angle is less than a critical value. The flow is assumed to be polytropic, isentropic and described by a steady potential equation. Based on the delicate asymptotic expansion of the background solution, one can verify that the boundary conditions on the shock and the conic surface satisfy the “dissipative” property. From this property, by use of the reflected characteristics method and the special form of the shock equation, we show that the conic shock attached at the vertex of the cone exists globally in the whole space when the speed of the supersonic coming flow is appropriately large. On the other hand, we remove the smallness restriction on the sharp vertex angle in order to establish the global existence of a shock or a global weak solution, moreover, our proof approach is different from that in [Shuxing Chen, Zhouping Xin, Huicheng Yin, Global shock wave for the supersonic flow past a perturbed cone, Comm. Math. Phys. 228 (2002) 47-84] and [Zhouping Xin, Huicheng Yin, Global multidimensional shock wave for the steady supersonic flow past a three-dimensional curved cone, Anal. Appl. 4 (2) (2006) 101-132].  相似文献   

2.
We discuss the regular transonic shock reflections for a model problem of multidimensional conservation laws, the nonlinear wave system. We consider two incident shocks that create reflected shocks, and the state behind the reflected shocks becomes subsonic. We present the existence of the global solution to this configuration, and provide an analysis to handle a degeneracy occurred in the problem and Lipschitz estimates near the sonic boundary. We further implement Lax–Liu positive schemes and Strang splitting, and obtain linear correlations of the incident shock strength and the reflected shock strength. The result obtained in this paper develops a mathematical theory of transonic shock reflection problems. Furthermore the numerical result provides better understanding of the solution structure. This paper provides an application of an important physical problem.  相似文献   

3.
The supersonic flow past a concave double wedge is discussed. Because of the interaction between the outer shock attached at the head of the wedge and the inner shock issued from the concave corner, there is a rarefaction wave issued from the intersection of the outer and inner shock. The rarefaction wave is reflected by the outer shock and the wedge infinitely, while the outer shock is also bent due to interaction. The global existence of the solution is proved under the assumptions that the outer shock is weak and the difference of two slopes of the double wedge is small. Meanwhile, a rigorous proof of the asymptotic behavior of the global solution is given. The property is often ap plied to numerical computation. Project partially supported by the National Natural Science Foundation of China and Doctoral Programme Foundation of IHEC.  相似文献   

4.
We consider the thermodynamical equilibrium state flow of an inviscid non-heat-conducting gas flowing around a plane infinite wedge, and study the stationary solution to this problem–the so-called strong shock wave; the flow behind the shock front is subsonic.We find the solution to the linear analog of the original mixed problem, prove that the solution trace on the shock wave is the superposition of the direct and reflected waves, and (the main point) justify the Lyapunov asymptotical stability of the strong shock wave provided that the uniform Lopatinsky condition is fulfilled. The initial data have a compact support, and the solvability conditions occur.  相似文献   

5.
We consider the problem of two‐dimensional supersonic flow onto a solid wedge, or equivalently in a concave corner formed by two solid walls. For mild corners, there are two possible steady state solutions, one with a strong and one with a weak shock emanating from the corner. The weak shock is observed in supersonic flights. A longstanding natural conjecture is that the strong shock is unstable in some sense. We resolve this issue by showing that a sharp wedge will eventually produce weak shocks at the tip when accelerated to a supersonic speed. More precisely, we prove that for upstream state as initial data in the entire domain, the time‐dependent solution is self‐similar, with a weak shock at the tip of the wedge. We construct analytic solutions for self‐similar potential flow, both isothermal and isentropic with arbitrary γ ≥ 1. In the process of constructing the self‐similar solution, we develop a large number of theoretical tools for these elliptic regions. These tools allow us to establish large‐data results rather than a small perturbation. We show that the wave pattern persists as long as the weak shock is supersonic‐supersonic; when this is no longer true, numerics show a physical change of behavior. In addition, we obtain rather detailed information about the elliptic region, including analyticity as well as bounds for velocity components and shock tangents. © 2007 Wiley Periodicals, Inc.  相似文献   

6.
We consider the flow of an inviscid nonheatconducting gas in the thermodynamical equilibrium state around a plane infinite wedge and study the stationary solution to this problem, the so-called strong shock wave; the flow behind the shock front is subsonic.We find a solution to a mixed problem for a linear analog of the initial problem, prove that the solution trace on the shock wave is the superposition of direct and reflected waves, and, the main point, justify the Lyapunov asymptotical stability of the strong shock wave provided that the angle at the wedge vertex is small, the uniform Lopatinsky condition is fulfilled, the initial data have a compact support, and the solvability conditions take place if needed (their number depends on the class in which the generalized solution is found).  相似文献   

7.
The stability of the weak planar oblique shock front with respect to the perturbation of the wall is discussed. By the analysis of the formation and the global construction of shock and its asymptotic behaviour for stationary supersonic flow along a smooth rigid wall we obtain the stability of the solution containing a weak planar shock front. The stability can be used to single out a physically reasonable solution together with the entropy condition  相似文献   

8.
The problem of shock reflection by a wedge, which the flow is dominated by the unsteady potential flow equation, is a important problem. In weak regular reflection, the flow behind the reflected shock is immediately supersonic and becomes subsonic further downstream. The reflected shock is transonic. Its position is a free boundary for the unsteady potential equation, which is degenerate at the sonic line in self-similar coordinates. Applying the special partial hodograph transformation used in [Zhouping Xin, Huicheng Yin, Transonic shock in a nozzle I, 2-D case, Comm. Pure Appl. Math. 57 (2004) 1-51; Zhouping Xin, Huicheng Yin, Transonic shock in a nozzle II, 3-D case, IMS, preprint (2003)], we derive a nonlinear degenerate elliptic equation with nonlinear boundary conditions in a piecewise smooth domain. When the angle, which between incident shock and wedge, is small, we can see that weak regular reflection as the disturbance of normal reflection as in [Shuxing Chen, Linear approximation of shock reflection at a wedge with large angle, Comm. Partial Differential Equations 21 (78) (1996) 1103-1118]. By linearizing the resulted nonlinear equation and boundary conditions with above viewpoint, we obtain a linear degenerate elliptic equation with mixed boundary conditions and a linear degenerate elliptic equation with oblique boundary conditions in a curved quadrilateral domain. By means of elliptic regularization techniques, delicate a priori estimate and compact arguments, we show that the solution of linearized problem with oblique boundary conditions is smooth in the interior and Lipschitz continuous up to the degenerate boundary.  相似文献   

9.
The problem of shock reflection by a wedge in the flow dominated by the unsteady potential flow equation is an important problem. In weak regular reflection, the flow behind the reflected shock is immediately supersonic and becomes subsonic further downstream. The reflected shock is transonic. Its position is a free boundary for the unsteady potential equation, which is degenerate at the sonic line in self-similar coordinates. Applying the special partial hodograph transformation used in [Zhouping Xin, Huicheng Yin, Transonic shock in a nozzle I, 2-D case, Comm. Pure Appl. Math. LVII (2004) 1-51; Zhouping Xin, Huicheng Yin, Transonic shock in a nozzle II, 3-D case, IMS, preprint, 2003], we derive a nonlinear degenerate elliptic equation with nonlinear boundary conditions in a piecewise smooth domain. When the angle between incident shock and wedge is small, we can see the weak regular reflection as the disturbance of normal reflection as in [Chen Shuxing, Linear approximation of shock reflection at a wedge with large angle, Comm. Partial Differential Equations 21(78) (1996) 1103-1118]. By linearizing the resulted nonlinear equation and boundary conditions with the above viewpoint in [Chen Shuxing, Linear approximation of shock reflection at a wedge with large angle, Comm. Partial Differential Equations 21(78) (1996) 1103-1118], we obtain a linear degenerate elliptic equation with mixed boundary conditions in a curved quadrilateral domain. By means of elliptic regularization techniques, a delicate a priori estimate and compact arguments, we show that the solution of the linearized problem is smooth in the interior and Lipschitz continuous up to the degenerate boundary.  相似文献   

10.
本文用改进的Glimm格式的方法,研究一维活塞问题当活塞的运动速度是一个常数的扰动时含有激波的弱解的存在性.对波的相互作用以及扰动波在主激波和活塞上的反射作出了精确的估计,在对主激波的强度不加限制的情况下证明了激波解的整体存在性.  相似文献   

11.
In this paper, under certain downstream pressure condition at infinity, we study the globally stable transonic shock problem for the perturbed steady supersonic Euler flow past an infinitely long 2-D wedge with a sharp angle. As described in the book of Courant and Friedrichs [R. Courant, K.O. Friedrichs, Supersonic Flow and Shock Waves, Interscience, New York, 1948] (pages 317-318): when a supersonic flow hits a sharp wedge, it follows from the Rankine-Hugoniot conditions and the entropy condition that there will appear a weak shock or a strong shock attached at the edge of the sharp wedge in terms of the different pressure states in the downstream region, which correspond to the supersonic shock and the transonic shock respectively. It has frequently been stated that the strong shock is unstable and that, therefore, only the weak shock could occur. However, a convincing proof of this instability has apparently never been given. The aim of this paper is to understand this open problem. More concretely, we will establish the global existence and stability of a transonic shock solution for 2-D full Euler system when the downstream pressure at infinity is suitably given. Meanwhile, the asymptotic state of the downstream subsonic solution is determined.  相似文献   

12.
In this paper, we consider the effect of bulk viscosity in various hydrodynamic problems. We numerically study this effect on the front structure of the one-dimensional stationary shock wave and on the flow past blunt body. We estimate the effect of the bulk viscosity coefficient (BVC) on the heat transfer and drag of a sphere in a supersonic flow, apparently for the first time, by the numerical solution of parabolized Navier–Stokes equations. The solution is obtained by an original fast convergent method of global iterations of the longitudinal pressure gradient. The directions of further investigations of bulk viscosity are suggested.  相似文献   

13.
This paper studies an inverse problem for supersonic potential flow past a curved wedge, in which we design a suitable curved wedge such that the shock produced by the curved wedge can be controlled to the given position. Under suitable conditions, by characteristic method, we prove the existence of the global classical solution to this inverse problem and develop an optimal decay rate on the given shock’s second order derivatives. We finally construct a specific wedge such that the shock generated by the wedge is a convex combined one.  相似文献   

14.
We establish the existence of a global solution to a regular reflection of a shock hitting a ramp for the pressure gradient system of equations. The set-up of the reflection is the same as that of Mach's experiment for the compressible Euler system, i.e., a straight shock hitting a ramp. We assume that the angle of the ramp is close to 90 degrees. The solution has a reflected bow shock wave, called the diffraction of the planar shock at the compressive corner, which is mathematically regarded as a free boundary in the self-similar variable plane. The pressure gradient system of three equations is a subsystem, and an approximation, of the full Euler system, and we offer a couple of derivations.  相似文献   

15.
The autors apply the result obtained in [1] to consider a class of discontinuous piston problems for the system of one dimensional isentropic flow and prove that this problem admits a unique global classical discontinuous solution only containing one shock.  相似文献   

16.
§1.IntroductionInthispaperwestudyuniformsupersonicflowpastacurvedwedgewithasmalvertexangle.Inthiscaseanatachedshockoccurs.The...  相似文献   

17.
We consider global solutions of a dynamical equation in ferrimagnet. We show that it admits a global weak solution by using the penalty method. By the energy estimates method we show there exists a unique global smooth solution. Finally we establish the relationship between this equation and wave maps.  相似文献   

18.
The shock reflection problem is one of the most important problems in mathematical fluid dynamics, since this problem not only arises in many important physical situations but also is fundamental for the mathematical theory of multidimensional conservation laws that is still largely incomplete. However, most of the fundamental issues for shock reflection have not been understood, including the regularity and transition of different patterns of shock reflection configurations. Therefore, it is important to establish the regularity of solutions to shock reflection in order to understand fully the phenomena of shock reflection. On the other hand, for a regular reflection configuration, the potential flow governs the exact behavior of the solution in C 1,1 across the pseudo-sonic circle even starting from the full Euler flow, that is, both of the nonlinear systems are actually the same in a physically significant region near the pseudo-sonic circle; thus, it becomes essential to understand the optimal regularity of solutions for the potential flow across the pseudo-sonic circle (the transonic boundary from the elliptic to hyperbolic region) and at the point where the pseudo-sonic circle (the degenerate elliptic curve) meets the reflected shock (a free boundary connecting the elliptic to hyperbolic region). In this paper, we study the regularity of solutions to regular shock reflection for potential flow. In particular, we prove that the C 1,1-regularity is optimal for the solution across the pseudo-sonic circle and at the point where the pseudo-sonic circle meets the reflected shock. We also obtain the C 2,α regularity of the solution up to the pseudo-sonic circle in the pseudo-subsonic region. The problem involves two types of transonic flow: one is a continuous transition through the pseudo-sonic circle from the pseudo-supersonic region to the pseudo-subsonic region; the other a jump transition through the transonic shock as a free boundary from another pseudo-supersonic region to the pseudo-subsonic region. The techniques and ideas developed in this paper will be useful to other regularity problems for nonlinear degenerate equations involving similar difficulties.  相似文献   

19.
In this paper we prove the existence of a solution of a coupled system involving a two phase incompressible flow in the ground and the mechanical deformation of the porous medium where the porosity is a function of the global pressure. The model is strongly coupled and involves a nonlinear degenerate parabolic equation. In order to show the existence of a weak solution, we consider a sequence of related uniformly parabolic problems and apply the Schauder fixed point theorem to show that they possess a classical solution. We then prove the relative compactness of sequences of solutions by means of the Fréchet-Kolmogorov theorem; this yields the convergence of a subsequence to a weak solution of the parabolic system.  相似文献   

20.
We consider a mathematical model for an incompressible Newtonian fluid with intrinsic degrees of freedom in a smooth bounded domain. We first show that there exists a unique local strong solution for large initial data. Then, we prove that the local strong solution is indeed global provided that the initial data is sufficiently small. Furthermore, we prove that when the strong solution exists, all the global weak solutions constructed by Lions must be equal to the unique strong solution with the same initial data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号