首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents a front-tracking method for studying the large deformation of a liquid capsule enclosed by a thin shell in a shear flow. The interaction between the fluid and the shell body is accomplished through an implicit immersed boundary method. An improved thin-shell model for computing the forces acting on the shell middle surface during the deformation is described in surface curvilinear coordinates and within the framework of the principle of virtual displacements. This thin-shell model takes full account of in-plane tensions and bending moments developing due to the shell thickness and a preferred three-dimensional membrane structure. The approximation of the shell middle surface is performed through the use of the Catmull–Clark subdivision surfaces. The resulting limit surface is C2-continuous everywhere except at a small number of extraordinary nodes where it retains C1 continuity. The smoothness of the limit surface significantly improves the ability of our method in simulating capsules enclosed by hyperelastic thin shells with different shapes and physical properties. The present numerical technique has been validated by several examples including an inflation of a spherical shell and deformations of spherical, ellipsoidal and biconcave capsules in the shear flow. In addition, different types of motion such as tank-treading, swinging, tumbling and transition from tumbling to swinging have been studied over a range of shear rates, viscosity ratios and bending modulus.  相似文献   

2.
We introduce an iterative solution scheme in order to calculate stationary shapes of deformable elastic capsules which are steadily moving through a viscous fluid at low Reynolds numbers. The iterative solution scheme couples hydrodynamic boundary integral methods and elastic shape equations to find the stationary axisymmetric shape and the velocity of an elastic capsule moving in a viscous fluid governed by the Stokes equation. We use this approach to systematically study dynamical shape transitions of capsules with Hookean stretching and bending energies and spherical resting shape sedimenting under the influence of gravity or centrifugal forces. We find three types of possible axisymmetric stationary shapes for sedimenting capsules with fixed volume: a pseudospherical state, a pear-shaped state, and buckled shapes. Capsule shapes are controlled by two dimensionless parameters, the Föppl-von-Kármán number characterizing the elastic properties and a Bond number characterizing the driving force. For increasing gravitational force the spherical shape transforms into a pear shape. For very large bending rigidity (very small Föppl-von-Kármán number) this transition is discontinuous with shape hysteresis. The corresponding transition line terminates, however, in a critical point, such that the discontinuous transition is not present at typical Föppl-von-Kármán numbers of synthetic capsules. In an additional bifurcation, buckled shapes occur upon increasing the gravitational force.  相似文献   

3.
《Comptes Rendus Physique》2009,10(8):764-774
The objective of this review is to present the salient features of capsule mechanical behaviour under the influence of viscous deforming forces due to a flowing fluid. We focus on artificial capsules that are initially spherical with an internal liquid core and that are enclosed by a very thin hyperelastic membrane. Different constitutive laws, commonly used to describe the rheological behaviour of thin membranes, are presented. The motion and deformation of a single capsule freely suspended in a simple shear flow is presented as a function of membrane constitutive law and of initial pre-stress. The limitations of classical membrane models that neglect bending effects are discussed. To cite this article: D. Barthès-Biesel, C. R. Physique 10 (2009).  相似文献   

4.
We present an analysis of membrane motion of deformable capsules and red blood cells suspended in a linear shear flow and undergoing swinging and tumbling motions using three-dimensional numerical simulations. This study is motivated by the theory of the shape-preserving cells which predicts that the direction of the membrane rotation depends on the cell orientation and reverses at every 45° inclination angle of the cell major axis with respect to the external flow direction. By considering large deformation of capsules and red blood cells, here we investigate how the shape oscillation affects the time dependence and the direction reversal of the membrane rotation. We find that the membrane tank-tread is highly time-dependent in nature and synchronized with the time-dependent deformation. The maximum and minimum of the tank-tread velocity occur at and near the minimum and maximum deformation, respectively. For the swinging capsules and red blood cells, the direction of the membrane rotation is always along the direction of the external fluid rotation; however, a direction reversal occurs during the tumbling motion in which case the membrane rotates in the direction of the external fluid rotation when the major axis is mostly in the extensional quadrant of the shear flow, and in the opposite direction when it is mostly in the compressional quadrant. Unlike the theory which predicts the direction reversal at every 45° inclination angle irrespective of the control parameters, namely, the capillary number, viscosity ratio, and asphericity, we find that the angle at which the direction reversal occurs depends on these parameters. In particular, if the tumbling motion occurs by decreasing the capillary number, the membrane rotation is in the direction of the external flow rotation in the entire extensional quadrant, but in the opposite direction in the compressional quadrant, irrespective of the specific values of the capillary number. If the tumbling motion occurs by increasing the viscosity ratio and asphericity, the angle at which the direction reversal occurs depends on the specific values of these two parameters. The spatial variation of the tank-tread velocity also is analyzed and attributed to the straining motion of the external flow.   相似文献   

5.
We present an implicit immersed boundary method for the incompressible Navier–Stokes equations capable of handling three-dimensional membrane–fluid flow interactions. The goal of our approach is to greatly improve the time step by using the Jacobian-free Newton–Krylov method (JFNK) to advance the location of the elastic membrane implicitly. The most attractive feature of this Jacobian-free approach is Newton-like nonlinear convergence without the cost of forming and storing the true Jacobian. The Generalized Minimal Residual method (GMRES), which is a widely used Krylov-subspace iterative method, is used to update the search direction required for each Newton iteration. Each GMRES iteration only requires the action of the Jacobian in the form of matrix–vector products and therefore avoids the need of forming and storing the Jacobian matrix explicitly. Once the location of the boundary is obtained, the elastic forces acting at the discrete nodes of the membrane are computed using a finite element model. We then use the immersed boundary method to calculate the hydrodynamic effects and fluid–structure interaction effects such as membrane deformation. The present scheme has been validated by several examples including an oscillatory membrane initially placed in a still fluid, capsule membranes in shear flows and large deformation of red blood cells subjected to stretching force.  相似文献   

6.
The research of the motion and deformation of the RBCs is important to reveal the mechanism of blood diseases. A numerical method has been developed with level set formulation for elastic membrane immersed in incompressible fluid. The numerical model satisfies mass and energy conservation without the leaking problems in classical Immersed Boundary Method(IBM), at the same time, computing grid we used can be much smaller than the general literatures. The motion and deformation of a red blood cell(including pathological normal status) in microvascular flow are simulated. It is found that the Reynolds number and membrane's stiffness play an important role in the transmutation and oscillation of the elastic membrane. The normal biconcave shape of the RBC is propitious to create high deformation than other pathological shapes. With reduced viscosity of the interior fluid both the velocity of the blood and the deformability of the cell reduced. With increased viscosity of the plasma both the velocity of the blood and the deformability of the cell reduced. The tank treading of the RBC membrane is observed at low enough viscosity contrast in shear flow. The tank tread fixed inclination angle of the cell depends on the shear ratio and viscosity contrast, which can be compared with the experimental observation well.  相似文献   

7.
We reveal that under moderate shear stress (etagamma[over ] approximately 0.1 Pa) red blood cells present an oscillation of their inclination (swinging) superimposed to the long-observed steady tank treading (TT) motion. A model based on a fluid ellipsoid surrounded by a viscoelastic membrane initially unstrained (shape memory) predicts all observed features of the motion: an increase of both swinging amplitude and period (1/2 the TT period) upon decreasing etagamma[over ], a etagamma[over ]-triggered transition toward a narrow etagamma[over ] range intermittent regime of successive swinging and tumbling, and a pure tumbling at low etagamma[over ] values.  相似文献   

8.
The deformation of a liquid capsule enclosed by a thin shell in a simple shear flow is studied numerically using an implicit immersed boundary method. We present a thin-shell model for computing the forces acting on the shell middle surface during the deformation within the framework of the Kirchhoff–Love theory of thin shells. This thin-shell model takes full account of finite-deformation kinematics which allows thickness stretching as well as large deflections and bending strains. For hyperelastic materials, the plane-stress assumption is used to compute the hydrostatic pressure and the incompressibility condition yields the thickness strain component and the corresponding change in the thickness. The stresses developing over the cross-section of the shell are integrated over the thickness to yield the stress and moment resultants which are then used to compute the forces acting on the shell middle surface. The immersed boundary method is employed for calculating the hydrodynamics and fluid–structure interaction effects. The location of the thin shell is updated implicitly using the Newton–Krylov method. The present numerical technique has been validated by several examples including an inflation of a spherical shell and deformations of spherical and oblate spheroidal capsules in the shear flow.  相似文献   

9.
Dynamics of a micro-capsule with compressible membrane placed into planar flow is considered. The form of the capsule is assumed to be near-spherical and the membrane forces are calculated in the first order in respect to the membrane displacement. We have established that the capsule dynamics is governed by two dimensionless parameters in this limit, which account for membrane stretch modulus B, viscosities of inner fluid and solvent, capsule radius, external flow gradient and Taylor deformation parameter at rest. Phase diagram for capsule dynamical regimes is plotted on the plane of these two dimensionless parameters in the limits of low and high viscosity contrast between the fluid inside the capsule and the solvent.  相似文献   

10.
An improved penalty immersed boundary (pIB) method has been proposed for simulation of fluid–flexible body interaction problems. In the proposed method, the fluid motion is defined on the Eulerian domain, while the solid motion is described by the Lagrangian variables. To account for the interaction, the flexible body is assumed to be composed of two parts: massive material points and massless material points, which are assumed to be linked closely by a stiff spring with damping. The massive material points are subjected to the elastic force of solid deformation but do not interact with the fluid directly, while the massless material points interact with the fluid by moving with the local fluid velocity. The flow solver and the solid solver are coupled in this framework and are developed separately by different methods. The fractional step method is adopted to solve the incompressible fluid motion on a staggered Cartesian grid, while the finite element method is developed to simulate the solid motion using an unstructured triangular mesh. The interaction force is just the restoring force of the stiff spring with damping, and is spread from the Lagrangian coordinates to the Eulerian grids by a smoothed approximation of the Dirac delta function. In the numerical simulations, we first validate the solid solver by using a vibrating circular ring in vacuum, and a second-order spatial accuracy is observed. Then both two- and three-dimensional simulations of fluid–flexible body interaction are carried out, including a circular disk in a linear shear flow, an elastic circular disk moving through a constricted channel, a spherical capsule in a linear shear flow, and a windsock in a uniform flow. The spatial accuracy is shown to be between first-order and second-order for both the fluid velocities and the solid positions. Comparisons between the numerical results and the theoretical solutions are also presented.  相似文献   

11.
王含  张振宇  杨永明  胡越  张慧生 《中国物理 B》2008,17(10):3847-3855
A numerical method for simulating the motion and deformation of an axisymmetric bubble or drop rising or falling in another infinite and initially stationary fluid is developed based on the volume of fluid (VOF) method in the frame of two incompressible and immiscible viscous fluids under the action of gravity, taking into consideration of surface tension effects. A comparison of the numerical results by this method with those by other works indicates the validity of the method. In the frame of inviseid and incompressible fluids without taking into consideration of surface tension effects, the mechanisms of the generation of the liquid jet and the transition from spherical shape to toroidal shape during the bubble or drop deformation, the increase of the ring diameter of the toroidal bubble or drop and the decrease of its cross-section area during its motion, and the effects of the density ratio of the two fluids on the deformation of the bubble or drop are analysed both theoretically and numerically.  相似文献   

12.
A phase field model for dealing with shape instabilities in fluid membrane vesicles is presented. This model takes into account the Canham-Helfrich bending energy with spontaneous curvature. A dynamic equation for the phase-field is also derived. With this model it is possible to see the vesicle shape deformation dynamically, when some external agent instabilizes the membrane, for instance, inducing an inhomogeneous spontaneous curvature. The numerical scheme used is detailed and some stationary shapes are shown together with a shape diagram for vesicles of spherical topology and no spontaneous curvature, in agreement with known results.  相似文献   

13.
An elastic surface model is investigated by using the canonical Monte Carlo simulation technique on triangulated spherical meshes. The model undergoes a first-order collapsing transition and a continuous surface fluctuation transition. The shape of surfaces is maintained by a one-dimensional bending energy, which is defined on the mesh, and no two-dimensional bending energy is included in the Hamiltonian.  相似文献   

14.
We investigate the dynamics of microcapsules in linear shear flow within a reduced model with two degrees of freedom. In previous work for steady shear flow, the dynamic phases of this model, i.e. swinging, tumbling and intermittent behaviour, have been identified using numerical methods. In this paper, we integrate the equations of motion in the quasi-spherical limit analytically for time-constant and time-dependent shear flow using matched asymptotic expansions. Using this method, we find analytical expressions for the mean tumbling rate in general time-dependent shear flow. The capsule dynamics is studied in more detail when the inverse shear rate is harmonically modulated around a constant mean value for which a dynamic phase diagram is constructed. By a judicious choice of both modulation frequency and phase, tumbling motion can be induced even if the mean shear rate corresponds to the swinging regime. We derive expressions for the amplitude and width of the resonance peaks as a function of the modulation frequency.  相似文献   

15.
A fixed-mesh algorithm is proposed for simulating flow–structure interactions such as those occurring in biological systems, in which both the fluid and solid are incompressible and the solid deformations are large. Several of the well-known difficulties in simulating such flow–structure interactions are avoided by formulating a single set of equations of motion on a fixed Eulerian mesh. The solid’s deformation is tracked to compute elastic stresses by an overlapping Lagrangian mesh. In this way, the flow–structure interaction is formulated as a distributed body force and singular surface force acting on an otherwise purely fluid system. These forces, which depend on the solid elastic stress distribution, are computed on the Lagrangian mesh by a standard finite-element method and then transferred to the fixed Eulerian mesh, where the joint momentum and continuity equations are solved by a finite-difference method. The constitutive model for the solid can be quite general. For the force transfer, standard immersed-boundary and immersed-interface methods can be used and are demonstrated. We have also developed and demonstrated a new projection method that unifies the transfer of the surface and body forces in a way that exactly conserves momentum; the interface is still effectively sharp for this approach. The spatial convergence of the method is observed to be between first- and second-order, as in most immersed-boundary methods for membrane flows. The algorithm is demonstrated by the simulations of an advected elastic disk, a flexible leaflet in an oscillating flow, and a model of a swimming jellyfish.  相似文献   

16.
This work presents a numerical study that addresses the role of the interfacial fracture energy on the debonding process of a capsule embedded in an elastic matrix, which undergoes a uniaxial far-field stress. The motivation of this work is to analyze and to understand the effects of this energy in the framework of the so-called encapsulation-based self-healing cementitious materials, where glass capsules filled with a fluid healing agent are embedded in a cement-based matrix. A two-dimensional plane strain model based on a combination of the classical finite element method and cohesive surface techniques implemented in the commercial code Abaqus® has been used. It has been found that there exist three types of debonding regimes, ranging from a perfect brittle response up to a ductile-limited response, and whose range of validity is governed by a straightforward dimensionless number able to predict the type of debonding as a function of flexural properties of the capsule and the interface strength.  相似文献   

17.
The dynamics of a single fluid bilayer membrane in an external hydrodynamic flow field is considered. The deterministic equation of motion for the configuration is derived taking into account both viscous dissipation in the surrounding liquid and local incompressibility of the membrane. For quasi-spherical vesicles in shear flow, thermal fluctuations can be incorporated in a Langevin-type equation of motion for the deformation amplitudes. The solution to this equation shows an overdamped oscillatory approach to a stationary tanktreading shape. Inclination angle and ellipticity of the contour are determined as a function of excess area and shear rate. Comparisons to numerical results and experiments are discussed. Received 20 August 1998  相似文献   

18.
The deformation and breakup processes of a particle-cluster aggregate under shear flows are investigated by the two-phase lattice Boltzmann method. In the simulation the particle is modeled by a hard droplet with large viscosity and strong surface tension. The van der Waals attraction force is taken into account for the interaction between the particles. Also, the Brownian motion is considered for nano-particles. Two important dimensionless parameters are introduced in order to classify calculated results. One is the ratio of fluid force to the maximum inter-particle force, Y, and the other is the Péclet number which is the ratio of the rate of diffusion by a shear flow to the rate of diffusion by Brownian motion. It is found that Y is the key factor in dispersion and that the Brownian motion retards the dispersion.  相似文献   

19.
20.
Dynamic response analysis is presented for a Reissner–Mindlin plate with four free edges resting on a tensionless elastic foundation of the Winkler-type and Pasternak-type. The mechanical loads consist of transverse partially distributed impulsive loads and in-plane static edge loads while the temperature field is assumed to exhibit a linear variation through the thickness of the plate. The material properties are assumed to be independent of temperature. The two cases of initially compressed plates and of initially heated plates are considered. The formulations are based on Reissner–Mindlin first-order shear deformation plate theory and include the plate–foundation interaction and thermal effects. A set of admissible functions is developed for the dynamic response analysis of moderately thick plates with four free edges. The Galerkin method, the Gauss–Legendre quadrature procedure and the Runge–Kutta technique are employed in conjunction with this set of admissible functions to determine the deflection-time and bending moment–time curves, as well as shape mode curves. An iterative scheme is developed to obtain numerical results without using any assumption on the shape of the contact region. The numerical illustrations concern moderately thick plates with four free edges resting on tensionless elastic foundations of the Winkler-type and Pasternak-type, from which results for conventional elastic foundations are obtained as comparators. The results confirm that the plate will have stronger dynamic behavior than its counterpart when it is supported by a tensionless elastic foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号