首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
The purpose of this study is to set up a dynamically linked 1D and 2D hydrodynamic and sediment transport models for dam break flow.The 1D-2D coupling model solves the generalized shallow water equations,the non-equilibrium sediment transport and bed change equations in a coupled fashion using an explicit finite volume method.It considers interactions among transient flow,strong sediment transport and rapid bed change by including bed change and variable flow density in the flow continuity and momentum equations.An unstructured Quadtree rectangular grid with local refinement is used in the 2D model.The intercell flux is computed by the HLL approximate Riemann solver with shock captured capability for computing the dry-to-wet interface for all models.The effects of pressure and gravity are included in source term in this coupling model which can simplify the computation and eliminate numerical imbalance between source and flux terms.The developed model has been tested against experimental and real-life case of dam-break flow over fix bed and movable bed.The results are compared with analytical solution and measured data with good agreement.The simulation results demonstrate that the coupling model is capable of calculating the flow,erosion and deposition for dam break flows in complicated natural domains.  相似文献   

2.
Shallow water flows are found in a variety of engineering problems always dominated by the presence of bed friction and irregular bathymetry. These source terms determine completely the possible evolution of the flooded area in time. It is well known that appropriate numerical schemes for this type of flows must be well-balanced. Well-balanced numerical schemes are based on the preservation of cases of quiescent equilibrium over variable bed elevation. Commonly they are formulated as an adaptation of numerical solvers defined for cases without source terms. This procedure is insufficient when applied to real situations. Then, it is possible to argue that appropriate numerical schemes cannot arise directly from those derived from the simplest homogeneous case without source terms. New solutions are presented in this work by defining weak solutions that include the presence of source terms. To do that, the solvers presented in this work extend the number of waves in the well known HLL and HLLC solvers involving a stationary jump in the solution. This is done without modifying the original solution vector of conserved quantities. The resulting approximate Riemann solvers include variable bed level surface and friction. Solvers are systematically assessed via a series of test problems with exact solutions for one and two dimensions, including steady and unsteady flow configurations, variation of the flooded area in time and comparisons with experimental data. The obtained results point out that the new method is able to predict faithfully the overall behavior of the solution and of any type of waves.  相似文献   

3.
A finite volume method for the numerical solution of axisymmetric inviscid swirling flows is presented. The governing equations of the flow are the axisymmetric compressible Euler equations including swirl (or tangential) velocity. A first-order scheme is introduced where the convective fluxes at cell interfaces are evaluated by the Rusanov or the HLLC numerical flux while the geometric source terms are discretizated to provide a well-balanced scheme i.e. the steady-state solutions with null velocity are preserved. Extension to the second-order space approximation using a multislope MUSCL method is then derived. To test the numerical scheme, a stationary solution of the fluid flow following the radial direction has been established with a zero and nonzero tangential velocity. Numerical and exact solutions are compared for classical Riemann problems where we employ different limiters and effectiveness of the multislope MUSCL scheme is demonstrated for strongly shocked axially symmetric flows like in spherical bubble compression problem. Two other tests with axisymmetric geometries are performed: the supersonic flow in a tube with a cone and the axisymmetric blunt body with a free stream.  相似文献   

4.
Weak solutions of problems with m equations with source terms are proposed using an augmented Riemann solver defined by m + 1 states instead of increasing the number of involved equations. These weak solutions use propagating jump discontinuities connecting the m + 1 states to approximate the Riemann solution. The average of the propagated waves in the computational cell leads to a reinterpretation of the Roe’s approach and in the upwind treatment of the source term of Vázquez-Cendón. It is derived that the numerical scheme can not be formulated evaluating the physical flux function at the position of the initial discontinuities, as usually done in the homogeneous case. Positivity requirements over the values of the intermediate states are the only way to control the global stability of the method. Also it is shown that the definition of well-balanced equilibrium in trivial cases is not sufficient to provide correct results: it is necessary to provide discrete evaluations of the source term that ensure energy dissipating solutions when demanded. The one and two dimensional shallow water equations with source terms due to the bottom topography and friction are presented as case study. The stability region is shown to differ from the one defined for the case without source terms, and it can be derived that the appearance of negative values of the thickness of the water layer in the proximity of the wet/dry front is a particular case, of the wet/wet fronts. The consequence is a severe reduction in the magnitude of the allowable time step size if compared with the one obtained for the homogeneous case. Starting from this result, 1D and 2D numerical schemes are developed for both quadrilateral and triangular grids, enforcing conservation and positivity over the solution, allowing computationally efficient simulations by means of a reconstruction technique for the inner states of the weak solution that allows a recovery of the time step size.  相似文献   

5.
In this work we present a general strategy for constructing multidimensional HLLE Riemann solvers, with particular attention paid to detailing the two-dimensional HLLE Riemann solver. This is accomplished by introducing a constant resolved state between the states being considered, which introduces sufficient dissipation for systems of conservation laws. Closed form expressions for the resolved fluxes are also provided to facilitate numerical implementation. The Riemann solver is proved to be positively conservative for the density variable; the positivity of the pressure variable has been demonstrated for Euler flows when the divergence in the fluid velocities is suitably restricted so as to prevent the formation of cavitation in the flow.We also focus on the construction of multidimensionally upwinded electric fields for divergence-free magnetohydrodynamical (MHD) flows. A robust and efficient second order accurate numerical scheme for two and three-dimensional Euler and MHD flows is presented. The scheme is built on the current multidimensional Riemann solver and has been implemented in the author’s RIEMANN code. The number of zones updated per second by this scheme on a modern processor is shown to be cost-competitive with schemes that are based on a one-dimensional Riemann solver. However, the present scheme permits larger timesteps.Accuracy analysis for multidimensional Euler and MHD problems shows that the scheme meets its design accuracy. Several stringent test problems involving Euler and MHD flows are also presented and the scheme is shown to perform robustly on all of them.  相似文献   

6.
7.
Transient flow over erodible bed is solved in this work assuming that the dynamics of the bed load problem is described by two mathematical models: the hydrodynamic model, assumed to be well formulated by means of the depth averaged shallow water equations, and the Exner equation. The Exner equation is written assuming that bed load transport is governed by a power law of the flow velocity and by a flow/sediment interaction parameter variable in time and space. The complete system is formed by four coupled partial differential equations and a genuinely Roe-type first order scheme has been used to solve it on triangular unstructured meshes. Exact solutions have been derived for the particular case of initial value Riemann problems with variable bed level and depending on particular forms of the solid discharge formula. The model, supplied with the corresponding solid transport formulae, is tested by comparing with the exact solutions. The model is validated against laboratory experimental data of different unsteady problems over erodible bed.  相似文献   

8.
In this work, the source term discretization in hyperbolic conservation laws with source terms is considered using an approximate augmented Riemann solver. The technique is applied to the shallow water equations with bed slope and friction terms with the focus on the friction discretization. The augmented Roe approximate Riemann solver provides a family of weak solutions for the shallow water equations, that are the basis of the upwind treatment of the source term. This has proved successful to explain and to avoid the appearance of instabilities and negative values of the thickness of the water layer in cases of variable bottom topography. Here, this strategy is extended to capture the peculiarities that may arise when defining more ambitious scenarios, that may include relevant stresses in cases of mud/debris flow. The conclusions of this analysis lead to the definition of an accurate and robust first order finite volume scheme, able to handle correctly transient problems considering frictional stresses in both clean water and debris flow, including in this last case a correct modelling of stopping conditions.  相似文献   

9.
We present a highly robust second order accurate scheme for the Euler equations and the ideal MHD equations. The scheme is of predictor–corrector type, with a MUSCL scheme following as a special case. The crucial ingredients are an entropy stable approximate Riemann solver and a new spatial reconstruction that ensures positivity of mass density and pressure. For multidimensional MHD, a new discrete form of the Powell source terms is vital to ensure the stability properties. The numerical examples show that the scheme has superior stability compared to standard schemes, while maintaining accuracy. In particular, the method can handle very low values of pressure (i.e. low plasma ββ or high Mach numbers) and low mass densities.  相似文献   

10.
We develop a lattice Boltzmann method for modeling free-surface temperature dispersion in the shallow water flows. The governing equations are derived from the incompressible Navier-Stokes equations with assumptions of shallow water flows including bed frictions, eddy viscosity, wind shear stresses and Coriolis forces. The thermal effects are incorporated in the momentum equation by using a Boussinesq approximation. The dispersion of free-surface temperature is modelled by an advection-diffusion equation. Two distribution functions are used in the lattice Boltzmann method to recover the flow and temperature variables using the same lattice structure. Neither upwind discretization procedures nor Riemann problem solvers are needed in discretizing the shallow water equations. In addition, the source terms are straightforwardly included in the model without relying on well-balanced techniques to treat flux gradients and source terms. We validate the model for a class of problems with known analytical solutions and we also present numerical results for sea-surface temperature distribution in the Strait of Gibraltar.  相似文献   

11.
The proposed scheme, which is a conservative form of the interpolated differential operator scheme (IDO-CF), can provide high accurate solutions for both compressible and incompressible fluid equations. Spatial discretizations with fourth-order accuracy are derived from interpolation functions locally constructed by both cell-integrated values and point values. These values are coupled and time-integrated by solving fluid equations in the flux forms for the cell-integrated values and in the derivative forms for the point values. The IDO-CF scheme exactly conserves mass, momentum, and energy, retaining the high resolution more than the non-conservative form of the IDO scheme. A direct numerical simulation of turbulence is carried out with comparable accuracy to that of spectral methods. Benchmark tests of Riemann problems and lid-driven cavity flows show that the IDO-CF scheme is immensely promising in compressible and incompressible fluid dynamics studies.  相似文献   

12.
In this paper, the solution of the Riemann Problem for the one-dimensional, free-surface Shallow Water Equations over a bed step is analyzed both from a theoretical and a numerical point of view. Particular attention has been paid to the wave that is generated at the location of the bed discontinuity. Starting from the classical Shallow Water Equations, considering the bed level as an additional variable, and adding to the system an equation imposing its time invariance, we show that this wave is a contact wave, across which one of the Riemann invariants, namely the energy, is not constant. This is due to the fact that the relevant problem is nonconservative. We demonstrate that, in this type of system, Riemann Invariants do not generally hold in contact waves. Furthermore, we show that in this case the equations that link the flow variables across the contact wave are the Generalized Rankine–Hugoniot relations and we obtain these for the specific problem. From the numerical point of view, we present an accurate and efficient solver for the step Riemann Problem to be used in a finite-volume Godunov-type framework. Through a two-step predictor–corrector procedure, the solver is able to provide solutions with any desired accuracy. The predictor step uses a well-balanced Generalized Roe solver while the corrector step solves the exact nonlinear system of equations that consitutes the problem by means of an iterative procedure that starts from the predictor solution. In order to show the effectiveness and the accuracy of the proposed approach, we consider several step Riemann Problems and compare the exact solutions with the numerical results obtained by using a standard Roe approach far from the step and the novel two-step algorithm for the fluxes over the step, achieving good results.  相似文献   

13.
This paper develops a direct Eulerian generalized Riemann problem (GRP) scheme for two-dimensional (2D) relativistic hydrodynamics (RHD). It is an extension of the GRP scheme for one-dimensional (1D) RHDs [Z.C. Yang, P. He, H.Z. Tang, J. Comput. Phys. 230 (2011) 7964–7987] and the GRP scheme for the non-relativistic hydrodynamics [M. Ben-Artzi, J.Q. Li, G. Warnecke, J. Comput. Phys. 218 (2006) 19–43]. In order to derive the direct Eulerian GRP scheme, the (local) GRP of the split 2D RHD equations in the Eulerian formulation has to be directly resolved by using corresponding Riemann invariants and Rankine–Hugoniot jump conditions so that the crucial and delicate Lagrangian treatment in the original GRP scheme [M. Ben-Artzi, J. Falcovitz, J. Comput. Phys. 55 (1984) 1–32] may be avoided. An important difference of resolving the GRP of the split 2D RHD equations from the GRP of the 1D RHD equations or the non-relativistic hydrodynamical equations is coming from the fact that the flow regions across the shock or rarefaction wave in the GRP of the split 2D RHD equations are nonlinearly coupled through the Lorentz factor which is also built in terms of the tangential velocities. It is a purely multi-dimensional relativistic feature. Several numerical examples are given to demonstrate the accuracy and effectiveness of the proposed 2D GRP scheme.  相似文献   

14.
We derive and study supergravity BPS flow equations for M5 or D3 branes wrapping a Riemann surface. They take the form of novel geometric flows intrinsically defined on the surface. Their dual field-theoretic interpretation suggests the existence of solutions interpolating between an arbitrary metric in the ultraviolet and the constant-curvature metric in the infrared. We confirm this conjecture with a rigorous global existence proof.  相似文献   

15.
The generalized Riemann problem (GRP) scheme for the Euler equations and gas-kinetic scheme (GKS) for the Boltzmann equation are two high resolution shock capturing schemes for fluid simulations. The difference is that one is based on the characteristics of the inviscid Euler equations and their wave interactions, and the other is based on the particle transport and collisions. The similarity between them is that both methods can use identical MUSCL-type initial reconstructions around a cell interface, and the spatial slopes on both sides of a cell interface involve in the gas evolution process and the construction of a time-dependent flux function. Although both methods have been applied successfully to the inviscid compressible flow computations, their performances have never been compared. Since both methods use the same initial reconstruction, any difference is solely coming from different underlying mechanism in their flux evaluation. Therefore, such a comparison is important to help us to understand the correspondence between physical modeling and numerical performances. Since GRP is so faithfully solving the inviscid Euler equations, the comparison can be also used to show the validity of solving the Euler equations itself. The numerical comparison shows that the GRP exhibits a slightly better computational efficiency, and has comparable accuracy with GKS for the Euler solutions in 1D case, but the GKS is more robust than GRP. For the 2D high Mach number flow simulations, the GKS is absent from the shock instability and converges to the steady state solutions faster than the GRP. The GRP has carbuncle phenomena, likes a cloud hanging over exact Riemann solvers. The GRP and GKS use different physical processes to describe the flow motion starting from a discontinuity. One is based on the assumption of equilibrium state with infinite number of particle collisions, and the other starts from the non-equilibrium free transport process to evolve into an equilibrium one through particle collisions. The different mechanism in the flux evaluation deviates their numerical performance. Through this study, we may conclude scientifically that it may NOT be valid to use the Euler equations as governing equations to construct numerical fluxes in a discretized space with limited cell resolution. To adapt the Navier–Stokes (NS) equations is NOT valid either because the NS equations describe the flow behavior on the hydrodynamic scale and have no any corresponding physics starting from a discontinuity. This fact alludes to the consistency of the Euler and Navier–Stokes equations with the continuum assumption and the necessity of a direct modeling of the physical process in the discretized space in the construction of numerical scheme when modeling very high Mach number flows. The development of numerical algorithm is similar to the modeling process in deriving the governing equations, but the control volume here cannot be shrunk to zero.  相似文献   

16.
李诗尧  于明 《计算物理》2019,36(5):505-516
提出一种数值模拟凝聚炸药爆轰问题的单元中心型Lagrange方法.利用有限体积离散爆轰反应流动方程组,基于双曲型偏微分方程组的特征理论获得离散网格节点的速度与压力,获得的网格节点速度与压力用于更新网格节点位置以及计算网格单元边的数值通量.以这种方式获得的网格节点解是一种"真正多维"的理论解,是一维Godunov格式在二维Riemann问题的推广.有限体积离散得到的爆轰反应流动的半离散系统使用一种显-隐Runge-Kutta格式来离散求解:显式格式处理对流项,隐式格式处理化学反应刚性源项.算例表明,提出的单元中心型Lagrange方法能够较好地模拟凝聚炸药的爆轰反应流动.  相似文献   

17.
We present a multilayer Saint-Venant system for the numerical simulation of free surface density-stratified flows over variable topography. The proposed model formally approximates the hydrostatic Navier–Stokes equations with a density that varies depending on the spatial and temporal distribution of a transported quantity such as temperature or salinity. The derivation of the multilayer model is obtained by a Galerkin-type vertical discretization of the Navier–Stokes system with piecewise constant basis functions. In contrast with classical multilayer models in the literature that assume immiscible fluids, we allow here for mass exchange between layers. We show that the multilayer system admits a kinetic interpretation, and we use this result to formulate a robust finite volume scheme for its numerical approximation. Several numerical experiments are presented, including simulations of wind-driven stratified flows.  相似文献   

18.
A numerical scheme based on the method of fundamental solutions (MFS) is proposed for the solution of 2D and 3D Stokes equations. The fundamental solutions of the Stokes equations, Stokeslets, are adopted as the sources to obtain flow field solutions. The present method is validated through other numerical schemes for lid-driven flows in a square cavity and a cubic cavity. Test results obtained for a rectangular cavity with wave-shaped bottom indicate that the MFS is computationally efficient than the finite element method (FEM) in dealing with irregular shaped domain. The paper also discusses the effects of number of source points and their locations on the numerical accuracy.  相似文献   

19.
A fourth-order numerical method for the zero-Mach-number limit of the equations for compressible flow is presented. The method is formed by discretizing a new auxiliary variable formulation of the conservation equations, which is a variable density analog to the impulse or gauge formulation of the incompressible Euler equations. An auxiliary variable projection method is applied to this formulation, and accuracy is achieved by combining a fourth-order finite-volume spatial discretization with a fourth-order temporal scheme based on spectral deferred corrections. Numerical results are included which demonstrate fourth-order spatial and temporal accuracy for non-trivial flows in simple geometries.  相似文献   

20.
In the present paper, we present some numerical methods to solve the equations of steady and unsteady flows, such as those in the microcirculatory bed and large blood vessels (arteries and veins), respectively. In the case of steady flows, the method does not need neither any boundary conditions on pressure nor any small parameter, and the main computation consists of solving some Poisson equations. In the case of unsteady flows, the scheme uses a consistent Neumann boundary condition for the pressure Poisson equation. At each time step, a Poisson and heat equation are solved for the pressure and each velocity component, respectively. The accuracy and efficiency of scheme are checked by a set of numerical tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号